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ABSTRACT

Statistical regression methods can help pharmaceutical organiza-
tions improve the quality of their pharmacovigilance by predicting
the expected quantity of adverse events during a trial. However,
the use of statistical techniques also changes the risk profile of any
downstream tasks, due to bias and noise in the model’s predictions.
That risk profile must be clearly understood, documented, and com-
municated across many different stakeholders in a highly regulated
environment. Aggregated performance metrics such as explained
variance or mean average error fail to tell the whole story, making it
difficult for subject matter experts to feel confident in deciding to use
a model. In this work, we describe guidelines for communicating
regression model performance for models deployed in predicting
adverse events. First, we describe an interview study in which both
data scientists and subject matter experts within a pharmaceutical
organization describe their challenges in communicating and un-
derstanding regression performance. Based on the responses in
this study, we develop guidelines for which visualizations to use to
communicate performance, and use a publicly available trial safety
database to demonstrate their use.

Keywords: Visual Communication, Regression Models, Pharma-
covigilance

1 INTRODUCTION

Advanced analytics and statistical methods have seen increasing
use by pharmaceutical organizations to improve the quality of their
pharmacovigilance [1, 11]. Notably, regression models have been
shown to accurately predict and detect the under-reporting of adverse
events (AEs) in clinical trials [16,20,21] – a persistent and recurrent
issue raised by the FDA and GCP [33]. By identifying outliers in
AE reporting through advanced regression methods, pharmaceutical
companies can improve the early-detection of data collection or
processing issues at trial sites, prevent delays in the required approval
process, and ultimately improve patient safety [15].

Although regression methods can augment traditional pharma-
covigilance approaches, a new challenge emerges: how can a di-
verse set of stakeholders and subject matter experts (SMEs) assess
a model’s risk profile in a highly regulated space, such as clinical
safety? Stakeholders and SMEs often rely on model builders them-
selves to translate the reliability and limitations of predictive models,
under the assumption that these translations will be accessible by
the audience [14]. However, empirical studies suggest that even
SMEs can be overwhelmed and disappointed during presentations
by data scientists, particularly when metrics alone are presented as
an assessment of the model’s performance [14, 23, 31]. Without a
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more careful consideration for the communication of model perfor-
mance between data scientists and SMEs, pharmacovigilance groups
can fail to capitalize on the predictive power of modern machine
learning and artificial intelligence techniques. It has been suggested
that similar conditions limited the use of machine learning in other
applications and domains, such as cybersecurity [30].

In this workshop paper, we present a design study on effective
communication of regression models deployed for pharmacovigi-
lance. First, we describe a preliminary interview study within a
pharmaceutical corporation conducted with two participant groups:
data scientists who build regression models, and SMEs who make
decisions based on a regression model’s performance and outputs.
From our interviews, we outline common challenges that occur when
communicating and assessing regression models, and offer guide-
lines for visual communication methods for a regression model’s
performance. Lastly, we demonstrate the use of our guidelines with
a pharmacovigilance use case, illustrating the performance of three
different regression models trained on a publicly available trial safety
database for predicting AEs in clinical trials.

2 RELATED WORK

The interpretability and transparency of machine learning models is
an active field being tackled at every level of industry and academia.
We take a more targeted approach, focusing on the specific needs
of users within a pharmaceutical corporation. However, we still
review related works to identify previous examples of the use of
statistical methods in pharmacovigilance. We then offer a high-level
summary of relevant work in model communication to understand if
any current solutions address our use case.

2.1 Predictive Models in Pharmacovigilance

Advanced analytics have been in use in pharmacovigilance for
decades to investigate both the risks and benefits of medicines
[1, 8, 11]. For example, Ménard et al. developed a predictive model
that enables the oversight of AE reporting in clinical trials at the
program, study, site, and patient levels [20, 21]. The authors de-
scribe that the deployment of these predictive models can lessen
the labor-intensive load of manual investigations by pharmaceutical
sponsors [33], however, the authors do not detail whether challenges
occurred in the model’s actual adoption by end-users. Previous
studies suggest that these techniques are rarely deployed in practice
at healthcare and pharmaceutical organizations, regardless of their
ability to improve pharmacovigilance and QA practices [4, 7, 29].

Seneviratne et al. call to bridge the implementation gap of ma-
chine learning in healthcare by merging ML algorithms into the
‘socio-technical’ milieu of the organization [27]. Shah et al. suggests
that the utility of ML algorithms could be better demonstrated in
practice if stakeholders and healthcare patients could better assess
the performance of a predictive model without relying on standard
performance metrics [28]. In this work, we intentionally study how
the performance of a regression model can be effectively communi-
cated to SMEs and decision-makers, with the goal of improving the
accessibility and use of predictive models in pharmacovigilance.
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2.2 Model Communication
Effective presentation of a predictive model’s performance to do-
main scientists, SMEs, and other stakeholders is of ongoing study in
literature. Researchers in explainable AI seek to help users interpret
and explain the inferences of AI models by visualizing the internal
workings of those models [6, 19, 22, 34]. Metrics and principles
are posed for explainable AI [12, 25], guidelines for defining inter-
pretability are suggested [5, 36], and visual analytic tools enhance
machine learning and AI transparency [2, 13, 17, 26]. While much
of this research is relevant to the use case in this paper, they target
explainability at too low of a level – the proposed solutions are
typically complex and often require training. From our interview
study, we found that there was a need for better solutions at a higher
level to facilitate communication between data scientists and SMEs.

Our work is closer to the user-centered approaches that interview
and observe builders and consumers of AI models for improved ML
workflows. For example, previous work has examined the workflow
for machine learning practitioners to characterize common chal-
lenges faced by those in industry settings [14, 23]. Similarly, Suresh
et al. suggest improving ML workflows by characterizing stakehold-
ers by their personal knowledge and expertise outside of ML [31].
Our work attempts to consider both ‘expert’ and ‘non-expert’ roles,
and examine the bridge of communication between them within a
small scope of regression models for pharmacovigilance.

While most related work at least touches on how visualization
can be used as a communication method for the interpretability of
ML models, to our knowledge, no previous work aims to under-
stand the communication gap between data scientists and SMEs who
must make decisions based on a regression model’s performance.
To address this, we identify what data scientists who build models
and SMEs that use their predictions find most valuable in the in-
terpretation of a regression model’s outcome. Our interviews with
members of both groups, described in Section 3, lead us to create
guidelines (Section 3.3) that can be used broadly by the community
for communicating regression model performance to SMEs.

3 INTERVIEW STUDY

To identify visualization techniques that are most effective in com-
municating a regression model’s performance, we conducted an
interview study within a pharmaceutical company with two partici-
pant groups: data scientists who regularly build regression models,
and SMEs who make decisions with regression models in their daily
work. In this section, we describe our study design, interview proto-
col, and identify our participants’ priorities when communicating
and interpreting the capabilities of a regression model.

3.1 Study Design
Participants: In total, 6 data scientists and 6 subject matter ex-
perts were recruited via email. During our email exchange, potential
participants were informed that the purpose of the interview was to
discuss their experiences interpreting and communicating a regres-
sion model’s performance. When recruiting SMEs, we specifically
targeted those without direct expertise in statistics, but who have
worked with or seen a regression model in the past. For data scien-
tists, we targeted those who have developed or assessed regression
models at some point in their daily work. Demographics for our
participants, including their area of expertise and level of familiarity
with regression models, can be seen in Table 2.
Procedure: All of our interviews were semi-structured and took
45-60 minutes to complete. Each interview was conducted virtually
on Microsoft Teams with audio only. Shortly before each inter-
view, participants were given a copy of the consent form which
contained information about the study, its design, and their rights as
participants. Each participant verbally consented to the study over
a recording and was given an anonymous demographics survey to
complete. At the start of each interview, participants were given a

Figure 1: Visual representation provided to participants for the
regression model they are tasked with assessing in the first part of
our interview study (Section 3). Participants were shown 10 rows of
the input data, with labeled attributes for each predictor variable.

refresher on regression models which included: (1) a definition, (2)
an example of a regression model being used at a weather station
to predict daily temperature, (3) the semantic difference between
regression and classification models.

Participants were shown the same set of prepared slides to walk
through three different scenarios of assessing and communicating
the performance of a regression model, one question at a time. Re-
gardless of the participant’s organizational role (data scientist or
SME), the same questions were given during the interview. For time
sensitivity, we did not ask all data scientists and SMEs every ques-
tion that was included in our slide deck. Our slides and interview
questions are included as supplementary material.
Interviews: While previous work has investigated common ma-
chine learning interpretability challenges faced by data scientists
[23], machine learning practitioners [14] and stakeholders [31], our
work focuses directly on how communication can be improved be-
tween data scientists and subject matter experts when the end-goal is
to use a regression model in their workflow. Our interviews consider
three major topics, presented as individual scenarios we stepped
through with participants during the interview:

1. What would you need to know about a regression model to
recommend its use? Participants were described a theoretical
scenario in which a new regression model was being presented
at their workplace. In our slides, we illustrated the regression
model as one that predicts a water potability score based on a
set of input predictor values (e.g., pH, sulfate). A subset of the
input data was shown to participants, and the output of the model
displayed a predicted water potability score as a numerical value.
The visual representation of the scenario shown to participants
is available in Figure 1. Participants described what they would
need to know about the model to recommend and trust its use.

2. How have you assessed and communicated a regression
model at work previously? We asked participants to think of a
time when a regression model was introduced to their daily work.
In our slides, we presented examples of regression models com-
monly deployed for pharmacovigilance. Once the participant had
a particular model in mind, they described how its performance
was assessed, communicated, and scrutinized.

3. How could communicating a regression model’s perfor-
mance with data scientists and subject matter experts be im-
proved? We asked participants to describe what they would
like the opposite role to better communicate or give feedback on
when assessing the performance of a regression model together.
In other words, SMEs were asked what they would like data sci-
entists to communicate to them regarding a model’s performance,
and data scientists were asked what they would like SMEs to
communicate to them regarding a model’s performance.

For the first scenario of our interview study, we asked participants
how they would assess a regression model that they had never seen
before. Our goal was to engage participants in a broad discussion
on factors that influence their trust and interpretation of a regression
model when being presented on its performance. In the second sce-
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nario, a number of data scientists and SMEs elaborated on projects
related to modeling adverse events in clinical trials, which we con-
sider for our use case in Section 4. For the remainder of the section,
we summarize results for all three interview scenarios.

3.2 Study Results

A preliminary analysis of our interviews revealed several high-level
differences and similarities between the experiences and concerns
of data scientists and SMEs. In this workshop paper, we highlight
the findings that were most relevant to our use case, and present
guidelines based on these findings. We hope to provide further
analysis of our interview results in future work.

To recommend a model’s use, we found data scientists strongly
valued performance metrics, the distribution and correlation of fea-
tures, and overall data quality when assessing regression models. On
the other hand, SMEs were primarily concerned with the limitations
of the regression model, particularly where the model might fail.
One SME detailed the risks that he must consider when using a
regression model to predict under-reporting of AEs in clinical trials:
“Under-reporting is very critical for clinical trials because it’s safety
information. . . which needs to be notified from the scientists, to the
teams, to the company. . . There can be a risk to the patient’s safety,
[if] we have not addressed a safety issue which has come up on time,
that may have an impact on changing the safety profile of the drug.
So, it [the model’s performance] has quite an impact.”

Another SME working in pharmacovigilance was strongly con-
cerned about the reliability of the model’s outputs, particularly when
it affects patient safety. She was the only interviewee of ours to
adamantly question how the predicted water potability score, de-
scribed in the first scenario of our interview, would be used in the real
world. In particular, she noted that she would need to exhaustively
know the limitations and risks of the model before recommending its
use: “If we’re telling people that water is potable, that means they’re
going to use it for washing, cooking, cleaning, drinking. . . there are
consequences to that decision. You know, there is a human being at
the end of it. That’s the reason why I’d want as much information
about the model as possible. So if I’m going to make a decision
about applying this in the real world, then at least I know exactly
what its limitations are before making a decision on something.”

During the second scenario of our interview, all participants men-
tioned charts, graphs, or interfaces that would be or have been useful
to them in assessing a model’s performance. Overwhelmingly, SMEs
requested the ability to see how certain inputs (or features) affected
the output of a model to test out its performance. This offers evi-
dence that there is an appetite for the interactive explainable systems
that are seen in literature, e.g., the What-if tool [35] for black box
models, and similar tools for classification models [24, 37].

When discussing how communication could be improved, data
scientists told us they expected to spend time explaining the tech-
nical details of their models’ performance to SMEs. They did not
expect SMEs to already know regression metrics by name, noting
that slides are prepared in advance to cover questions about quanti-
fying performance. However, SMEs stated they did not always feel
comfortable asking questions during presentations, often due to the
pacing of the explanation: “Data scientists show a regression curve
and it’s so normal for them. . . they don’t always realize that people
don’t understand some of the visuals for the models and what they
really mean. Sometimes it just goes over your head, and I think the
end-user a good chunk of the time would be too embarrassed to say
- I don’t get what you’re talking about” (SME).

Similar feedback from interview participants suggests that there
can be a mismatch in the interpretation of the conversation between
data scientists and SMEs, where visualization could more effectively
act as an explanatory bridge. Further, it suggests that commonly used
charts for visualizing regression performance may not be as easily
interpretable or recognizable to SMEs as data scientists perceive.

3.3 Guidelines

From the analysis of our interviews, we derive a set of guidelines
for communicating the performance of a regression model to SMEs.

The first two guidelines address a lack of context and comfort
identified by SMEs: “You have to make the end-user feel comfortable
both in the data scientist’s language, and also that if they don’t
understand something they can easily ask, what is this?” (SME).

G1: When articulating results, start slow and offer to speed
up. All SMEs we interviewed suggested that data scientists could
spend more time highlighting aspects of their presentation that
could be considered “obvious”, in order to establish a common
baseline for the language spoken and understood. For example,
data scientists could define common performance metrics or po-
tentially nuanced visual encodings before detailing their results.

G2: Tie in use cases for the model by illustrating real-life,
objective-driven examples. Across all of our interviews, when
asked what they would want to know about a model’s performance
to recommend its use, a common request made by SMEs was to
understand how a regression model’s performance relates to their
end-goals for the model. This request is especially critical when
using regression models that affect patient and/or public safety.

The next three guidelines relate to the choice of visualization style
when communicating and presenting regression model performance
to SMEs: “Some people don’t have experience with visualization
outside of BBC infographics. I do realize it can be hard for me to
remove my data scientist hat and put myself into the role of somebody
who’s not looking at a log plot every day” (data scientist).

G3: Provide context for performance by annotating plots
with stories. Each annotated story serves to decode the intended
message of the visualization, beyond the visualized data and pro-
vided legend. By guiding the audience through sensible conclu-
sions on a provided visualization, an SME could more quickly
arrive at new conclusions with the same visualization

G4: For any chart that communicates a model’s performance,
provide a range of comparisons. SMEs found that assessing
the results of a regression model’s performance is easier if it is
compared against their current practices, an interpretable naive
baseline model, and if possible, an oracle or perfect model.

G5: Visually explain significance of global metrics. Global
metrics such as explained variance or mean absolute error can
seem abstract and removed from the use case. Showing metrics in
visual context can help ground them; for example, visualizing the
enveloping ellipse in a correlation scatterplot can give a proxy for
the correlation between predicted and actual values.

The final three guidelines address concerns by both data scientists
and SMEs in understanding the caveats, edge cases, outliers, and
limitations of the model: “If data scientists said, ‘when you run
these models, here is the area where we think you’re going to have
the most problems, or the most risk. And here’s the explanation for
why we think that’s happening.’. . . I think upfront and transparent
communication about why we should expect those issues is a very
big way for us to build trust and confidence in the model” (SME).

G6: Point to outliers in the model’s performance with known
or plausible explanations. The source of outliers and anomalies
is often dependent on the scenario, therefore, data scientists should
point SMEs to known or potential outliers, and include at least
reasonable speculations behind their anomalous behavior.

G7: Be descriptive about the data used for training and test-
ing a model, and provide examples. The distribution, weighting,
correlation, and availability of the data used in the modeling pro-
cess were notable concerns from both SMEs and data scientists.
Many data scientists agreed that SMEs provide essential context
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(a) XGB model (b) KNN model

Figure 2: Absolute error plots for two models predicting adverse
event rate. To explain the mean absolute error global metric, the
average error is shown as a green rectangle compared with the sorted
errors of individual sites, showing that approximately 80% of sites
have better than average error with the XGB model. Residual plots
for the remaining models can be seen in Figure 5 of the appendix.

for the data domain, ultimately leading to improvements in model
performance and transparent communication.

G8: Explicitly demonstrate the error, limitations, and weak-
nesses of the model, not just the strengths. From our interviews,
SMEs want transparent information regarding the limitations of a
model with both qualitative and quantitative assessments of those
errors or weaknesses. Both SMEs and data scientists noted that
they were able to help each other improve a model’s performance
once the limitation of the model was fully understood.

4 USE CASE: MODELING ADVERSE EVENTS

To demonstrate how our guidelines for communicating regression
model performance can be used, we present a use case on modeling
AEs in clinical trials. We train three different models and two
baselines, then provide example visualizations that could be used
in explaining the performance of these models. A write-up of our
modeling process is included in our appendix, and error metrics
for the regressors trained are available in Table 1. A subset of
visualizations for our models are provided in the main text, however,
examples for each can be found in the appendix (Figures 4, 5, 6).

4.1 Communicating Model Performance
For the remainder of this section, we provide examples of visual-
izations and explanations that follow the proposed guidelines in
Section 3.3 for the five models described above.

Adding context and comfort: To address G1 and G2, we suggest
starting with an explanation of the model’s basic functions. For
example, if a KNN model was used, it could be explained that
the model looks at the rates of similar historical trials based on
multiple aspects: the program, patient, site, and study phases.
Walking through a single example of inference, or a simplified
illustration, can establish a level of comfort with SMEs and better
tie the model to the use case at hand. For context on the data used
in the modeling process (G7), a description of the data can be
provided, as in Table 3.

Provide annotated visualizations explaining global metrics:
For the use case of predicting the rate of AEs, we propose us-
ing a bar chart showing the residuals between predicted and actual,
sorted by size of the residual. The shape of this plot shows how
error is apportioned globally (G5). Explanatory annotations (G3)
can show the mean absolute error and a comparison against a
baseline (G4) can show the different shapes of error, as seen in

KNN Mean

Figure 3: Heat map showing the apportionment of error of a KNN
model vs. a baseline (mean), split by treatment in each row. This
visualization explains whether the model is biased towards certain
subgroups in the data. An annotation could be added to point out
that the KNN model has a better r2 for Influenza trials than the mean,
but a worse mean absolute error for Lymphoma trials. Heat maps
for remaining models can be seen in Figure 4 of the appendix.

Figure 2. A containing ellipse can also be shown to provide a
visual of the r2 of the regression model (e.g., Figure 6) [10].

Caveats, edge cases, outliers, and limitations:. Examples of
the input data should be provided, with special focus given to
trials where the model has greatest error (G6). SMEs also want
to know if there are segments of the data that the model has high
error on; we recommend looking at the most important features
of the model and using a heat map to show which categories have
high error (G7), as seen in Figure 3. This heat map can show
multiple error metrics across all categories. However, different
error metrics have different scales, so some normalization must
be applied to make outliers visually salient. The most important
limitations of a model can be communicated textually or visually
(G8). For example, if a KNN model is used, it should be explained
that they are highly sensitive to noisy or junk data, while it can be
communicated that an XGB model might be slower to train.

5 CONCLUSION AND FUTURE WORK

In this work, we present guidelines for communicating regression
model performance within a pharmaceutical organization. Based
on interviews with both data scientists and subject matter experts,
we identify common gaps in communication and suggest broadly
applicable solutions for data scientists to use in communicating their
results to SMEs. Lastly, we demonstrate how our guidelines could
be used in practice by illustrating a pharmacovigilance use case.

We hope to have future work in several directions. First, we
would like to quantitatively analyze our interview data to better un-
derstand mismatches in language between data scientists and SMEs.
Characterizing these gaps could lead to more pointed recommen-
dations about common language to use, or a visual language to
facilitate translation. We would also like to evaluate commonly
used regression visualizations, including those suggested in this
workshop paper, to evaluate if SMEs indeed find them helpful when
interpreting a model’s performance. Finally, empirical studies can
comparatively analyze the efficacy of our suggested guidelines.
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A APPENDIX

A.1 Modeling Process
The data used is a small subset of the ClinicalTrials.gov data ac-
cessed through the AACT database [32], which contains a large
quantity of basic trial summary and results information. We use this
information to predict the number of AEs per enrolled person.

The dataset was filtered by requiring all values to be filled, in
addition to the study being a completed interventional study that
lasted one or more years. We also filtered the dataset by removing
any studies that did not have a MeSH1 term for the condition, or an
intervention in the 40 most popular within the current subset. Finally,
all categorical features were transformed into a one-hot encoding.
The resulting dataset totals 2572 instances with 96 derived features,
88 of which are one-hot encodings of categorical features.

Three basic regression models were chosen: Linear Regres-
sion [18] (OLS), K-Nearest Neighbors Regression [9] (KNN), and
Gradient Boosting Tree Regression [3] (XGB). Two ‘dummy’ re-
gression models were included as interpretable baselines: one that
always predicts the mean, and one that always predicts the median.

Some hyperparameter tuning was done for two of the regression
models, KNN and XGB. We split the dataset into a train and test set
of 75% and 25%. The training set was then used to perform three
fold cross validation grid search to find the best hyperparameters
based on mean squared error. For the KNN we looked for the
number of nearest neighbors, and for XGB we examined different
max depths. We found the best value for the nearest neighbors to be
25, and the best value for max depth to be 3.

Each of the regression models were then trained on the full train-
ing set, using the best hyperparameter values found with the grid
search where appropriate. Finally, the mean squared error (MSE),
mean absolute error (MAE), and coefficient of determination (Rˆ2)
on the test set was recorded. Error metrics for all regressors trained
are available in Table 1.

A.2 Additional Tables and Figures

Regressor MAE MSE Rˆ2

OLS 0.564 1.064 0.283
XGB 0.579 1.090 0.266
KNN 0.703 1.364 0.082
Mean 0.788 1.486 -0.001
Median 0.736 1.621 -0.091

Table 1: Error metrics across the three regressors, and two heuristic
methods used as baselines. In order of lowest mean squared error,
regressors were Linear Regression (OLS), Gradient Boosting Trees
(XGB), and K-Nearest Neighbors Regression (KNN). The two base-
line methods were Mean and Median, which predicted the Mean and
Median of the training set respectively.

1https://www.ncbi.nlm.nih.gov/mesh/

(a) XGB model

(b) OLS model

(c) Median (baseline)

Figure 4: Heat maps for the remaining three models described in
Section 4.
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Measure Count

N 12
Age 18-29: 1, 30-39: 5, 40-49: 5, 50-59: 1, 60-69: 0
Gender Female: 5, Male: 7, Non-binary: 0
Education Associates: 0, Bachelors: 1, Masters: 7, Doctorate: 4
Role Data scientist: 6, Subject matter expert: 6
Data science experience No experience: 0, Somewhat familiar: 1, Familiar: 5, Very familiar: 3, Expert: 5
Frequency using data tools Never: 0, 1-3x/month: 0, 1-3x/week: 4, 1-3x/day: 2, All day: 6
Frequency using regression Never: 1, 1-3x/month: 4, 1-3x/week: 1, 1-3x/day: 5, All day: 1
Expertise (SMEs only): Finance 1, Commercial: 1, Pharmacovigilance: 2, Quality Assurance: 2

Table 2: Demographics table for the interview study described in Section 3.

Feature Description

Phase For a clinical trial of a drug product (including a biological product), the numerical phase of
such clinical trial, consistent with terminology in 21 CFR 312.21 and in 21 CFR 312.85 for
phase 4 studies.

Enrollment The estimated total number of participants to be enrolled (target number) or the actual total
number of participants that are enrolled.

Number of Arms The number of arms in the clinical trial. For a trial with multiple periods or phases that have
different numbers of arms, the maximum number of arms during all periods or phases.

Has Expanded Access Whether there is expanded access to the investigational product for patients who do not
qualify for enrollment in a clinical trial. Expanded Access for investigational drug products
(including biological products) includes all expanded access types under section 561 of the
Federal Food, Drug, and Cosmetic Act: (1) for individual participants, including emergency
use; (2) for intermediate-size participant populations; and (3) under a treatment IND or
treatment protocol.

Number of Facilities The number of participating facility in a clinical study.
Actual Duration Number of months between the start date and primary completion date. Start date: the

estimated date on which the clinical study will be open for recruitment of participants, or the
actual date on which the first participant was enrolled. Primary completion date: the date
that the final participant was examined or received an intervention for the purposes of final
collection of data for the primary outcome, whether the clinical study concluded according to
the pre-specified protocol or was terminated. In the case of clinical studies with more than
one primary outcome measure with different completion dates, this term refers to the date on
which data collection is completed for all of the primary outcomes.

Months to Report Results Number of months between primary completion date and first received results date.
Minimum Age The numerical value, if any, for the min. age a potential participant must meet to be eligible

for the clinical study. (Years only for us)
Number of Primary Outcomes “Primary outcome measure” means the outcome measure(s) of greatest importance specified

in the protocol, usually the one(s) used in the power calculation. Most clinical studies have
one primary outcome measure, but a clinical study may have more than one.

Number of Secondary Outcomes “Secondary outcome measure” means an outcome measure that is of lesser importance than
a primary outcome measure, but is part of a pre-specified analysis plan for evaluating the
effects of the intervention(s) or interventions under investigation in a clinical study. , and is
not specified as an exploratory or other measure. A clinical study may have more than one
secondary outcome measure.

Condition Mesh Term Condition MeSH terms generated by NLM algorithm
Intervention Mesh Term Intervention MeSH terms generated by NLM algorithm

Table 3: Descriptions of the data used for training in Section 4.
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(a) OLS model

(b) Median (baseline)

(c) Mean (baseline)

Figure 5: Absolute error plots for the three remaining models de-
scribed in Section 4.

(a) KNN model

(b) XGB model

(c) OLS model

Figure 6: Correlation scatter plots for three of the models described
in Section 4.
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