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Machine learning is becoming a ubiquitous toolset for analyzing and making use

of large collections of data. Advanced learning algorithms are able to learn from

complex data to build models that can tackle artificial intelligence tasks previously

thought impossible. As a result, organizations from many domains are attempting

to apply machine learning to their data analysis problems. In practice, such efforts

can suffer from gaps between the goals of the human and the objective being opti-

mized by the machine, resulting in models that perform poorly in deployment. In

this dissertation, I present my thesis that visual analytics systems can improve the

performance of deployed models in applied machine learning tasks by allowing the

user to compensate for vulnerabilities in learning paradigms. First, I outline how

learning paradigms used by machine learning algorithms can miss out on certain

aspects of the end goal of the user. Then, I will describe four different visual ana-

lytics systems that allow the user to intervene in the learning process across many

types of data and models. In these systems, visualizations help users understand

how a model performs on different regions of the data. They can also help a user

encode their domain expertise to the learning algorithm, to correct for misalign-

ments between the goals of the machine and the needs of the application scenario.

This work offers evidence that advanced machine learning algorithms are applied

more effectively by involving a domain user in the learning process, using a visual

analytics tool as a medium.

v



Contents

Acknowledgments iii

Abstract v

Chapter 1 Introduction 1

1.1 Background on Machine Learning . . . . . . . . . . . . . . . . . . . . 3

1.2 Vulnerabilities of Learning Paradigms . . . . . . . . . . . . . . . . . 4

1.3 Visualization as a Medium . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Visual Analytics Tools for Addressing Vulnerabilities . . . . . . . . . 12

1.5 Outline of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Related Work 15

2.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Visual Analytics Workflows . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Modeling in Visual Analytics . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Artifical Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 22

2.4.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 23

2.5 Automated Machine Learning . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Neural Architecture Search . . . . . . . . . . . . . . . . . . . 26

2.6 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Automated Approaches . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Interactive Visual Data Curation . . . . . . . . . . . . . . . . 29

vi



Chapter 3 Exploratory Model Analysis 31

3.1 Exploratory Model Analysis . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 A Workflow for Exploratory Model Analysis . . . . . . . . . . . . . . 37

3.2.1 Prototype System . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Task Requirements . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Workflow Design . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Iterative System Design and Evaluation . . . . . . . . . . . . . . . . 43

3.3.1 Redesigned EMA System . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Analyzing the Popular Kids Dataset . . . . . . . . . . . . . . 54

3.4.2 Modeling Automobile Fuel Efficiency . . . . . . . . . . . . . . 55

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 4 Monitoring Training of Recurrent Neural Networks 60

4.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 RNNbow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Generating Gradient Data . . . . . . . . . . . . . . . . . . . . 71

4.3 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Overview of Gradients Over Time . . . . . . . . . . . . . . . 79

4.3.2 Vanishing Gradient . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Batches With Maximal Gradient . . . . . . . . . . . . . . . . 81

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Visualizing Gradients . . . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Role of Visual Analytics in Deep Learning . . . . . . . . . . . 83

4.4.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



Chapter 5 Controlling the Loss Function in Neural Architecture Search 87

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Design Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 REMAP: Rapid Exploration of Model Architectures and Parameters 96

5.3.1 General Workflow . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.4 Ablations and Variations . . . . . . . . . . . . . . . . . . . . 101

5.3.5 Sequential Neural Architecture Chips . . . . . . . . . . . . . 102

5.4 Expert Validation Study . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Participant Feedback . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.2 System Updates . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Use Case: Classifying Sketches . . . . . . . . . . . . . . . . . . . . . 109

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6.1 Human-in-the-Loop Neural Architecture Search . . . . . . . . 112

5.6.2 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Chapter 6 Data Augmentation to Improve Learnability 116

6.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Tasks and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Auger: A Visual Analytics System . . . . . . . . . . . . . . . . . . . 124

6.3.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.2 Backend Implementation . . . . . . . . . . . . . . . . . . . . 128

6.4 Use Case 1: Conflict Data . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Use Case 2: Modeling Unemployment . . . . . . . . . . . . . . . . . 131

6.6 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

viii



6.6.3 Tasks and procedure . . . . . . . . . . . . . . . . . . . . . . . 136

6.6.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6.5 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . 137

6.6.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.7.1 Mental Models of Data Augmentation . . . . . . . . . . . . . 141

6.7.2 Design Space for Interactions with Knowledge Graphs . . . . 142

6.7.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 7 Discussion 144

7.1 Bridging the Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 Guidelines for Transitioning from Systems to Theory . . . . . . . . . 146

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Chapter 8 Conclusion 151

Bibliography 153

ix



“He could physically feel, in his skin, how things were trending. Computers couldn’t

do this. This was the kind of ability that couldn’t be quantified or systematized. . . Deciding

which information to extract, and sifting through massive amounts of information

to find what is useful, was something only a flesh-and-blood person could do.”

-Haruki Murakami, 1Q84



Chapter 1

Introduction

In today’s world, data is stored in every interaction with a computer. Snapshots

are taken for every click or keystroke, for every website visited and every link fol-

lowed. Cameras follow us in big cities, and our household appliances have computers

that log most aspects of our daily lives. Our capabilities to process that data have

become incredibly complex, with new data science programs popping up at univer-

sities around the world, and large companies bidding against each other for talent

to fill new artificial intelligence divisions. New hardware is being developed simply

to speed up data processing, and cloud services and supercomputing centers offer

potential for massive scale solutions. Machine learning algorithms promise to mine

information from datasets and apply it to solve complex artifical intelligence prob-

lems. But in the face of all this capability, we must remember that data is only so

useful in how it can benefit the end goal of the user. Sometimes there is a broad

gap between the end goal of the user and the capabilities of the machine.

I present my thesis that visual analytics systems can improve the perfor-

mance of deployed models in applied machine learning tasks by allowing the user to

compensate for vulnerabilities in machine learning paradigms. Data visualization

can enable the viewer to discover insights into data, such as trends, outliers, or com-

parisons, that are difficult to find in other media such as spreadsheets or databases.

These types of insights can prove to be valuable in the discovery, training, and de-

bugging of machine learning models due to the value of ancillary data created by
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the learning algorithm. This ancillary data includes performance metrics, such as

accuracy, as well as the predictions made by the model on a holdout set. By ana-

lyzing this data during and after training, a user is able to insert themselves into

the modeling process and make use of their domain expertise to improve the model

selection process.

Automated methods for data analysis have arisen as a potential solution to

applied machine learning. As an example, consider a brief history of computer vision

algorithms for image classification. Originally, convolutional filters were handcrafted

to capture vertical and horizontal edges, or other local features like fuzzy textures.

These handcrafted filters were used to featurize an image, which would then be fed

into a machine learning algorithm [Hua96]. Now, these filters are automatically

learned using deep neural networks, and no handcrafting is necessary. Many of the

most accurate image recognition or language recognition models are made by statis-

ticians and computer scientists, without domain experts like linguists [VDDP18].

There is a general trend towards automation that throws into question whether

a human user is needed at all to apply machine learning to a domain problem. The

thesis defended in this dissertation aims to offer some existential evidence for the

value of the human in the loop. I argue that automated methods fail to meet the

needs of many applied machine learning use cases because of basic assumptions

embedded in learning algorithms.

In this introduction, I will outline how learning paradigms used by the ma-

chine can miss out on certain aspects of the end goal of the user. However, visu-

alizations of training data, internal representations of the machine learning models

during training, and the predictions made by those models have the potential to

reveal to a user whether the learning algorithm has found an appropriate model.

These visualizations can also serve as a medium for a domain expert to augment the

learning algorithm’s capabilities with their expertise. In the subsequent chapters,

I will review the literature around visual analytics for applied machine learning

and present four projects which tackle different scenarios in which an automated

algorithm will be misaligned with a user’s goal in applied machine learning.

2



1.1 Background on Machine Learning

I begin with some definitions of terms to motivate the discussion. I define a machine

learning model as a function f : X 7→ Y, mapping from the input space X to

the prediction space Y. Machine learning models are typically defined by a set of

parameters θ. For example, a simple linear regression model is parameterized by

the coefficients of the regression line, while a neural network is parameterized by

the weights of the transformations within each layer. A learning algorithm is a

process in which a machine learning model’s parameters are iteratively changed in

such a way that the resulting function fθ performs well at some task. There are

many different types of learning algorithms, but in this dissertation I focus only on

supervised learning, although much of this treatment could be applied to other types

of learning. In supervised learning, a training set Dtrain = (Xtrain, Ytrain);Xtrain ⊂

X , Ytrain ⊂ Y consisting of multiple pairs (xi, yi);xi ∈ Xtrain, yi ∈ Ytrain, is available.

The learning algorithm takes in the training set and learns a set of parameters θ

that define the resulting model. The learning algorithm chooses the parameters

that optimize an objective function, thus finding the model f that performs the

best, according to that objective function, on the data provided. The definition

outlined above encapsulates a broad problem space, so I’ll provide an illustrative

example to provide a practical basis for the remainder of the discussion.

Example: Self-driving cars. At the time of the writing of this disserta-

tion, there is a hotly contested race to develop artificial intelligence systems that

are able to drive automotive vehicles in a safe and reliable manner. This race began

with DARPA’s Grand Challenge in the mid-2000s [TMD+06], and continues today

with robotics labs at some of the largest companies in the world, such as Uber, Gen-

eral Motors, and Tesla. Towards the goal of fully autonomous vehicles, there exist

many individual tasks that can be expressed as function learning and solved using

machine learning models. One example is scene recognition. Cars must be able to

interpret scenes in front of them and determine whether they need to brake to avoid

a collision or if they are able to continue going forward. Consider X to be the space
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of possible images taken out of the front-facing camera of a self-driving car, and

Y = {openroad, car, redlight, greenlight, . . .} to be the set of possible scene classi-

fications. A learning algorithm could be used to learn a machine learning model

f that maps from images to scene classifications. To train that model, machine

learning scientists might gather a list of images by driving a car around manually

to get Xtrain and then manually labeling each image to obtain Ytrain.

1.2 Vulnerabilities of Learning Paradigms

The use of automated tools, such as machine learning algorithms, should be accom-

panied by assurances that they will behave in an acceptable way. We want to be

assured that the self-driving car will brake when it sees a person in the street. But

when we select and then train machine learning models, we only have information

about how they perform on the data that we have gathered. To engender trust and

mitigate risk in applied machine learning, we need to be able to understand the

potential for error when a machine learning model is deployed in the wild.

Computational learning theorists attempt to find theoretically sound defini-

tions of concepts found in machine learning, such as training data, validation ac-

curacy, and modelling. These definitions are then used to prove bounds on various

metrics like error and runtime. In the early 90s, Vapnik of Bell Laboratories mod-

eled the mitigation of risk in function learning, which we reproduce below [Vap92].

At a high level, we would like to bound the risk of deploying our model, and Vapnik

outlines a method for bounding that risk by the performance of the model on a

collection of training data.

Assume that we have a loss function L that maps from the image under

f , f(X) ⊆ Y, to a scalar quantity representing the penalty of our model making

mistakes. In the self-driving car example, the model might accrue loss when it

incorrectly interprets a green light when the scene actually contains a red light. The

risk functional R(θ) is defined as the expected amount of loss weighted by the joint

distribution of (x, y);x ∈ X , y ∈ Y:
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R(θ) =

∫
L(y, fθ(x))dP (x, y) (1.1)

Finding an optimal model is equivalent to finding the parameters θ that

minimize the risk.

θ∗ = argmin
θ

R(θ) (1.2)

In practice, we can’t calculate the true risk R(θ), because we don’t have a

closed-form expression for the joint distribution P (x, y). This is particularly true for

applied machine learning, where we are modeling complex real-world data. Instead,

we try to learn the θ that minimizes the empirical risk, that is, the risk that we are

able to calculate on a set of training examples.

Remp(θ) =
1

n

n∑
i=1

L(yi, fθ(xi)) (1.3)

θ̂ = argmin
θ

Remp(θ) (1.4)

The empirical risk is simply the average loss on our training set. We assume

that empirical risk and the true risk are close enough, so by minimizing the empirical

risk, we find a set of parameters θ̂ that is a good approximation of the optimal θ∗.

Under certain conditions about the data being trained on, the models being used,

and the complexity of the problem at hand, empirical risk minimization can be

shown to converge to an approximately correct model, within a reasonable epsilon

of error, within a reasonable amount of training time [KVV94, SSBD14]. The logical

leap, then, in trusting that our trained machine learning models will behave well
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in the wild, is believing that the empirical risk that we calculate on our gathered

training data in the training process is a fair approximation of the true risk during

deployment. However, there are many situations found in real data that break these

assumptions. As a result, machine learning models are particularly vulnerable to

failure in applied scenarios.

In particular, I highlight the following three vulnerabilities in applied machine

learning using empirical risk minimization.

• V1: Misalignment between Training Data and Real World Data.

Any guarantees on the performance of a machine learning model out in the

wild rely on an assumption that the training set, which determines the model’s

learned parameters, comes from the same distribution of data as the data that

model will see during deployment (i.e. the data that we want some guarantees

of performance on). If the data seen in deployment is very different, the model

could perform poorly or in unexpected ways during deployment. In our self-

driving car case, suppose all images gathered for our training set were taken

in the pacific northwestern united states, with lots of greenery, clouds, and

rain defining the dataset. If the self-driving car were to be deployed in the

same environment, we might be reasonably confident it would behave about

as well as it did in training. But if the self-driving car were deployed in the

middle of the desert, with few clouds, no greenery, and no rain, it would be

hard to say whether the car would perform as well as it did during training.

Assessing whether the training set is appropriate requires some understanding

of the deployment scenario of the model. In the machine learning literature,

this is called domain adaptation [PY09, SSW15, Mur12].

• V2: Incorrect Loss Function. In applied machine learning scenarios, the

actual risk that we want to minimize can be hard to describe in a computable

way. For example, the risk of deployment of our self-driving car is likely tied

to not just the basic task of detecting objects, but the greater goal of get-

ting all passengers to their destination safely and efficiently. It could even be
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expressed broadly to include the success of the company that produces the

car and the potential impact of civil litigation in the event of car accidents.

This is dependent on a number of unknown factors including the regulatory

conditions and the economic climate. Learning algorithms typically use sim-

ple loss functions that calculate simple metrics like classification accuracy or

regression mean squared error.

When a simplistic loss function is used for a case with complex risk, there can

be negative externalities that result in much higher true risk. For example,

transportation researchers have suggested that self-driving cars could actually

increase congestion (and therefore emissions, pedestrian risk, and travel time)

because there is no cost difference between parking versus “cruising”, or cir-

cling a block until they are flagged to pick up a passenger [MB19]. The actual

risk of a model is something that is hard to explicitly encode in a learning

algorithm, but it likely can be estimated by domain experts knowledgeable

about the environment in which the model will be deployed.

• V3: Non-learnable problems. In some cases, it won’t be possible to find

a good solution to the learning problem and guarantee its performance. As a

result, the resulting deployed model will perform poorly at the applied task.

As an example, consider a special case of a classic problem of computer sci-

ence, the XOR problem (See Figure 1.1a). Four different points are sitting on

a 2D plane. Our goal is to divide the 2D plane into two regions using a linear

boundary such that all filled in points are found in one region, and all hollow

points are found in the other. With this particular dataset, it is impossible.

The XOR problem is usually brought up to demonstrate why different repre-

sentations can be needed in machine learning, since it can be solved with a

non-linear boundary between the two regions.

However, the problem points to the difficulties in finding simple solutions to

data that doesn’t behave well (in our case, isn’t linearly separable). The more

complex boundary we have to learn, the more chance of overfitting or having
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(a) (b)

Figure 1.1: A special case of the XOR problem. In (a), a single line can’t divide a
2D plane up so that each class is in its own region. With an additional dimension
of data, as seen in (b), the XOR problem is now solvable. A single plane can now
divide the space up so that each class is in its own region.

poor performance or long training times. And there may be cases where we

have constraints on the type of model we allow, i.e. we may be required to

use a linear model due to interpretability.

Rather than use a different representation, learnability can sometimes be ad-

dressed by finding additional attributes of data. If an additional dimension

is added in which the points are more discriminable (See Figure 1.1b), the

points can now be separated with a linear boundary (in this case, a plane

rather than a line, because we have increased the dimensionality by 1). In a

similar manner, some machine learning tasks are impossible if the phenomenon

being modeled (such as the linear separability of classes) is not fully present

in the training data. But with additional data, they might become solveable.

Each of these vulnerabilities have previously been identified by machine learn-

ing scientists, and there exist approaches to mitigate them. For example, for do-

main mismatch (V1), learning algorithms exist that detect and account for drift

between training data and testing data [GMCR04]. New loss functions can be

added into most machine learning software [PVG+11], and issues with learnabil-

ity are frequently addressed with novel learning representations such as very deep
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neural network architectures [HZRS16].

However, these approaches are insufficient in two ways. First, identifying the

problem and applying the correct fix requires machine learning expertise, and in

many applied machine learning scenarios, a domain expert is applying off-the-shelf

learning algorithms and has no access to a machine learning expert. Visual analytics

systems can provide a middle ground which have a low enough threshold for non-

experts to use, but high enough ceiling of capability to meet the needs of application

scenarios. Second, the actual vulnerability may be something that only lives in the

head of the domain expert, and it may only emerge once that domain expert has had

the opportunity to explore the data and engage with the model and its predictions.

For example, a domain user may not realize that the loss function being used by a

learning algorithm doesn’t capture one of their requirements (V2) until they find

some problematic errors made by that model. In addition, it has previously been

shown that human and machine collaborations can often solve problems that are

intractable by machine alone [KFM71]. In fact, we find evidence of this phenomena

in applied machine learning in chapter 3.

Fully automated machine learning solutions have been proposed as promising

tools for domain scientists to use in applied scenarios. However, they will run into

these four problems when applied to real-world problems with messy, real-world

datasets and usage scenarios. We posit that visual analytics systems can allow users

to compensate for these vulnerabilities in learning algorithms. In this dissertation,

I will describe visual analytics tools that address all four vulnerabilities.

1.3 Visualization as a Medium

The four problems outlined above might be addressed by inspection of data that is

generated throughout the training process. For example, an expert in the applied

domain might be able to identify vulnerability V1 by looking at the training set in a

spreadsheet and determine that it is not a representative sample of data. They may

be able to work with a machine learning expert to craft a better learning algorithm
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that accounts for a more domain-specific loss function (V2). They could forage

for additional data dimensions to craft a dataset in which the problem becomes

learnable (V3). But these solutions can be time-consuming and require expertise

that is outside of the expert’s domain. Data is often too large to manually inspect,

and collaborations between domain experts and machine learning experts are not

always available.

Visual analytics tools can empower domain experts with augmented control

over applied machine learning tasks. While there are many ways that visualization

can help with data-centric tasks, we highlight two particular uses for visualization

in applied machine learning.

X Mean 9.0
Y Mean 7.5
X Variance 11.0
Y Variance 4.12
Correlation 0.816
Linear Regression Line y = 3.0 + 0.5x

Figure 1.2: Anscombe’s quartet of four datasets with identical summary statistics
but very different visual shapes demonstrates the value of visualizing a dataset.
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First, visualization has been shown to enable insights that are easily missed

by common statistical tools or static views into the data. The canonical example

from the literature is Anscombe’s quartet (Figure 1.2), a set of four datasets with

identical summary statistics but very different shapes when visualized [Ans73]. Vi-

sualizations of the data make it clear that the four datasets model different phenom-

ena. However, this fact might have been hidden if the datasets were only observed

in a spreadsheet or through statistical metrics. Visualizations designed with gestalt

principles in mind can allow for important, complex, and often abstract insights to

be made just by viewing the shapes and textures of the sum of the data [Won10].

Visualizations can also deal with scale by aggregating information that is orthogonal

to the task at hand to allow a visual overview. Using interactions, visual analytics

systems can support multi-scale exploration of data.

Second, visualizations can be used as affordances to allow users to communi-

cate their domain expertise to the underlying learning algorithm. By combining sim-

ple, semantically relevant interactions, such as clicking and dragging points together

on a canvas or manipulating sliders, with dynamically updating data visualization,

visual analytics tools can let a user explore their data, the parameter spaces of the

models trained on that data, and the predictions of those models. And by direct

manipulation of these controls, the user can implicitly tell the system to modify the

learning algorithm. In this manner, they can imbue the learning algorithm with

enough domain expertise to address the vulnerabilities outlined above.

Taken together, these two uses comprise a medium, including input and

output, between a human and a machine. This medium enables the closing of the

gap between what a user desires in applied machine learning (robust and predictable

performance with high accuracy), and that which a fully-automated approach can

deliver.
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1.4 Visual Analytics Tools for Addressing Vulnerabili-

ties

In this dissertation I describe four different visual analytics projects for applied

machine learning, each demonstrating the role of visualization in discovering and

accounting for vulnerabilities of learning paradigms.

We address misalignments between training data and real world data (V1)

by letting users visually explore the training data as well as the machine learning

model predictions. Snowcat was developed as part of the DARPA program Data

Driven Discovery of Models (d3m), whose stated goal was to develop tools to enable

subject matter experts to discover applied machine learning models on par with or

better than the models that would be handcrafted by a machine learning expert.

In Snowcat, users first explore the data to discover relationships between features.

An automated machine learning backend trains a set of models on that data, and

then users compare the models’ performances by looking at individual predictions

on a validation set. The user then compares the models and tries to select the

one that they believe would perform best on a held out test dataset. Rather than

simple comparison by high-level metrics, such as accuracy or mean square error,

users visually compare the predictions of models in the context of the input data.

In a blind evaluation by the National Institute of Standards and Technology (NIST),

our system was the only human in the loop system in the d3m program in which

the user chose a model that performed better on held out test data than the model

chosen by a fully automated machine learning algorithm. This work was originally

presented at the 2019 Eurovis conference and published in the Computer Graphics

Forum journal in 2019 [CHH+19c].

Visual analytics can serve as a medium for users to implicitly drive the learn-

ing algorithm to account for their understanding of the risk of the machine learning

model and compensate for the learning algorithm using an incorrect loss function

(V2). In this dissertation, we show this in two ways.

First, we consider when the loss function involves possibly multiple objec-
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tives in which the trade off between objectives is part of the analysis itself. REMAP

enables a user to drive the search for an architecture for a convolutional neural net-

work. Users must trade off between many objectives, depending on the deployment

scenario of the model. They may care about accuracy, or model size, or performance

on particular classes, or even particular types of misclassifications. For example, it

is particularly important for a self-driving car that a pedestrian is not misclassified

as dust particles. By exploring the model space across several projections, and di-

recting the search within regions of that space, users can end up finding models that

better match their own notion of risk and loss. This work was presented at the IEEE

Conference on Visualization in 2019 and published in the journal of Transactions

on Visualization and Computer Graphics in 2019 [CPCS19].

Second, we consider the case when the loss function should include more

heuristic or qualitative properties that are difficult to encode into a learning algo-

rithm’s optimization. For example, it is important that a machine translation model

such as English to Chinese is able to remember context such as the gender of the

subject of a sentence. These qualitative properties of a model can help a domain user

understand the capabilities of their model and determine if it has trained sufficiently.

RNNbow is a web tool that visualizes gradients used to update the parameters of a

recurrent neural network. It can show a user whether an RNN is learning temporal

dependencies, a key aspect of any sequential model. It helps a user decide if a model

has trained enough and has acquired a long enough memory to be deployed. This

work was published in the Computer Graphics and Applications journal in 2018,

and presented at the IEEE Conference on Visualization in 2019 [CPM+18].

Lastly, visual analytics can be used to enable the discovery and manipulation

of additional features by serving as a medium to external information repositories

like knowledge graphs. By adding additional features to a training set, users can

help a problem become more learnable (V3). Auger is a tool built for interactive

columnar data augmentation. Users can forage for additional data columns by

looking through knowledge graphs and executing complex queries over the graph

topology. This lets the user shape the training set by adding additional columns that

13



include information that is needed to model the phenomenon of interest. At the time

of writing, this work has been conditionally accepted to be presented at the IEEE

Conference on Visualization in 2020 and published in the journal of Transactions

on Visualization and Computer Graphics in 2020 [CXD+20].

1.5 Outline of this Work

In chapter 2, I will review relevant work from the literature. I’ll cover many different

human-in-the-loop systems for applied machine learning, categorizing them by types

of models, types of interactions, and goals of the system.

In chapter 3, I will describe my visual analytics system for general applied

machine learning, titled Snowcat. I will also present a workflow for visual analytics

systems to enable exploratory model analysis, a process in which users can explore

the space of potential models that can be trained on a given dataset.

In chapter 4, I demonstrate the use of visualizations to communicate prop-

erties of models during training. I present a visual analytics tool for understanding

and identifying poor training of recurrent neural network models.

In chapter 5, I present a visual analytics tool for semiautomated neural ar-

chitecture search. This tool lets users find an architecture that is custom fit for their

specific usage scenario.

In chapter 6, I’ll describe my work on using visual analytics to facilitate data

augmentation to improve the learnability of applied machine learning problems.

Chapter 7 will consist of discussion of several topics. First, I tie the four

systems together in terms of risk minimization. Then, I’ll compare these systems

to efforts from the machine learning (ML) community to build more robust tools.

Lastly, I’ll discuss a theme for future work, to build abstractions so that the tech-

niques shown in this thesis can be generally applied across all models.

The dissertation will then be concluded in chapter 8.
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Chapter 2

Related Work

In this chapter, I review related work from the literature. First, I will give a brief

survey of visualization’s ability to facilitate a user’s ability to gather insights during

exploratory data analysis. Then, I give some background on the workflows1 of

visual analytics systems described in the literature to provide context on the role of

visualization in the user’s insight generation processes. This is relevant because the

visual analytics tools described in this dissertation rely on the user’s ability to derive

insights and understanding by viewing visualizations of data generated during the

training process. I also provide a brief survey on research on human-in-the-loop

systems for applied machine learning, categorizing them by types of models, types

of interactions, and goals of the system.

The systems in chapters 4 and 5 consider applied scenarios in which the

user is trying to build recurrent neural networks and convolutional neural networks,

respectively, so I offer some review of neural networks and the previous attempts

made in visualizing their training and predictions. Chapter 6 describes an effort to

allow a domain expert to augment a dataset with additional features to make an

applied problem easier to solve, so I also review data augmentation in this chapter.

I review some fully automated techniques for applied machine learning prob-

1Frameworks, pipelines, models, and workflows are often used interchangeably in the visualiza-
tion community to describe abstractions of sequences of task. In this dissertation, I use the word
workflow to avoid confusion. Further, I use the word model to specifically refer to machine learning
models and not visualization workflows.

15



lems next, paying special attention to fully automated techniques for neural ar-

chitecture search, which is done in a semi-automated way in chapter 5, and data

augmentation for model improvement, which is addressed with visual analytics in

chapter 6.

2.1 Exploratory Data Analysis

The statistician Tukey developed the term exploratory data analysis (EDA) in his

work from 1971 through 1977 [Tuk93] and his 1977 book of the same name [Tuk77].

EDA focuses on exploring the underlying data to isolate features and patterns

within [HME00]. EDA was considered a departure from standard statistics in that

it de-emphasized the methodical approach of posing hypotheses, testing them, and

establishing confidence intervals [Chu79]. Tukey’s approach tended to favor simple,

interpretable conclusions that were frequently presented through visualizations.

A flourishing body of research grew out of the notion that visualization was

a critical aspect of making and communicating discoveries during EDA [PS08]. This

research resulted in many (static) statistical visualization libraries for use by domain

scientists, (such as ggplot [WC+08], plotly [SPH+16], and matplotlib [Hun07]). In

more recent years, the visualization community has produced additional open source

software (such as D3 [BOH11], Voyager [SMWH17], InfoVis toolkit [Fek04]), com-

mercial visualization systems (such as Tableau [tab], spotfire [spo], Power BI [pow]),

and other visualization software designed for specific types of data or domain appli-

cations (for some examples, see surveys such as [DOL03, HBO+10]).

2.2 Visual Analytics Workflows

Visual analytics workflows grew out of research into Information Visualization (In-

fovis). Chi and Riedl [CR98] proposed the InfoVis reference model (later refined by

Card, Mackinlay and Shneiderman [CMS99]) that emphasizes the mapping of data

elements to visual forms. The framework by van Wijk [VW05] extends this with
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interaction – a user can change the specification of the visualization to focus on a

different aspect of the data.

The notion of effective design in Infovis has largely been summarized by

Shneiderman’s mantra; Overview, zoom & filter, details-on-demand [Shn96]. Keim

et. al. noted that as data increases in size and complexity, it becomes difficult

to follow such a mantra; an overview of a large dataset necessitates some sort of

reduction of the data by sampling or, alternatively, an analytical model. The authors

provide a framework of Visual Analytics that incorporates analytical models in the

visualization pipeline [KKE10]. Wang et al. [WZM+16] extended the models phase

in the framework by Keim et al. to include a model-building process with: feature

selection and generation, model building and selection, and model validation. Chen

and Golan [CG16] discuss prototypical workflows that include model building to

aid data exploration with various degrees of model integration into the analysis

workflows. Sacha et al. formalized the notion of user knowledge generation in visual

analytics system, accounting for modeling in the feedback loop of a mixed-initiative

system [SSZ+16]. While these frameworks have proven invaluable in guiding the

design of countless visual analytics systems, they muddle the delineation between

the different goals of including modeling in the visualization process, conflating

model building with insight discovery. The Auger system described in chapter 6 of

this dissertation ties these modern visual analytics workflows to earlier conceptions

of information foraging, or the process of seeking and gathering information to apply

towards a task [PC99, PC05].

The ontology for visual analytics assisted machine learning proposed by

Sacha et al. [SKKC19] presents a fairly complete picture of common concepts in

visual analytics systems that use machine learning, and offers suggestions of how

popular systems in the literature map onto that encoding. In chapter 3, I present

a workflow for machine learning model selection. While each step of this work-

flow can be mapped into the ontology, a key distinction in my workflow is in the

Prepare-Learning process. Sacha et al. note that ”in practice, quite often, the ML

Framework was determined before the step Prepare-Data or even before the raw
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Figure 2.1: The model generation framework of visual analytics by Andrienko et
al. [ALA+].

data was captured”. In my workflow, this is not the case - the framework, or ma-

chine learning modelling problem and its corresponding algorithms are not chosen

a priori.

Most similar to the Snowcat workflow in chapter 3 of this dissertation is the

one recently introduced by Andrienko et al. [ALA+], shown in Figure 2.1, that posits

that the outcome of the VA process can either be an “answer” (to a user’s analysis

question) or an “externalized model”. Externalized models can be deployed for a

multitude of reasons, including automating an analysis process at scale or for usage

in recommender systems. While similar in concept, we propose that the spirit of

the workflow by Andrienko et al. is still focused on data exploration (via model

generation) which does not adequately distinguish between a data- from a model-

focused use case such as the aforementioned financial broker and the quantitative

analyst.

2.3 Modeling in Visual Analytics

I summarize several types of support for externalizing models using visual analytics

with a similar categorization to that given by Liu et. al. [LWLZ17]. I summa-

rize these efforts into four groups: visual analytics for model construction and
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steering, explanation, debugging, and comparison.

Model Construction and Steering. A modeling expert frequently tries many

different settings when building a model, modifying various hyperparameters in

order to maximize some utility function, whether explicitly or implicitly defined.

Visual analytics systems can assist domain experts to control the model fitting

process by allowing the user to directly manipulate the model’s hyperparameters

or by inferring the model’s hyperparameters through observing and analyzing the

user’s interactions with the visualization.

Sedlmair et al. [SHB+14] provide a comprehensive survey of visual analyt-

ics tools for analyzing the parameter space of models. Example types of models

used by these visual analytics tools include regression [MP13], clustering [NHM+07,

CD19, KEV+18, SKB+18], classification [VDEvW11, CLKP10], dimension reduc-

tion [CLL+13, JZF+09, NM13, AWD12, LWT+15], and domain-specific modeling

approaches including climate models [WLSL17]. In these examples, the user directly

constructs or modifies the parameters of the model through the interaction of sliders

or interactive visual elements within the visualization.

In contrast, other systems support model steering by inferring a user’s in-

teractions. Sometimes referred to as semantic interaction [EFN12], these systems

allow the user to perform simple, semantically relevant interactions such as click-

ing and dragging and dynamically adjusts the parameters of the model accord-

ingly. For example, ManiMatrix is an interactive system that allows users to ex-

press their preference for where to allot error in a classification task [KLTH10].

By specifying which parts of the confusion matrix they don’t want error to appear

in, they tell the system to search for a classification model that fits their prefer-

ences. Disfunction [BLBC12] allows the user to quickly define a distance metric

on a dataset by clicking and dragging data points together or apart to represent

similarity. Wekinator enables a user to implicitly specify and steer models for music

performance [FTC09]. BEAMES [DCCE19] allows a user to steer multiple models

simultaneously by expressing priorities on individual data instances or data features.

Heimerl et. al. [HKBE12b] support the task of refining binary classifiers for docu-
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ment retrieval by letting users interactively modify the classifier’s decision on any

document.

Model Explanation. The ability to extract meaningful explanations of a model’s

decisionmaking is not only important to the model builder themselves, but to any-

one else affected by that model, as required by ethical and legal guidelines such as

the European Union’s General Data Protection Regulation (GDPR) [Cou18]. This

is sometimes called the explainability or interpretability of a model, and it has shown

to be an ill-defined property that is difficult to measure [AGM+18, Lip16, DVK17].

Visual analytics systems attempt to explain models by visualizing their predictions

as well as decisions made leading to those predictions. With Squares [RAL+17],

analysts can view classification models based on an in-depth analysis of label distri-

bution on a test data set. Krause et. al. allowed for instance-level explanations of

triage models based on a patient’s medication listed during intake in a hospital emer-

gency room [KDS+17]. Gleicher noted that a simplified class of models could be used

in a VA application to trade off some performance in exchange for a more explain-

able analysis [Gle13]. Many other systems and techniques purport to render various

types of models interpretable, including deep learning models [LSC+18b, LSL+17,

SGPR18, YCN+15, BJY+18], topic models [WLS+10], word embeddings [HG18],

regression models [MP13], classification models [PBD+10, RSG16, ACD+15], and

composite models for classification [LXL+18].

Model Debugging. While the calculations used in machine learning models can be

excessively complicated, endemic properties of models that cause poor predictions

can sometimes be diagnosed visually relatively easily. Seq2Seq-Vis visualizes the

five different modules used in sequence-to-sequence neural networks, and provides

examples of how errors in all five modules can be diagnosed [SGB+18]. Alsallakh

et al. provide several visual analysis tools for debugging classification errors by

visualizing the class probability distributions [AHH+14]. Kumpf et al. [KTB+18]

provide an interactive analysis method to debug and analyze weather forecast models

based on their confidence estimates. These tools allow a model builder to view how

and where their model is breaking, on specified data instances.
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Model Comparison. The choice of which model to use from a set of candidate

models is highly dependent on the needs of the user and the deployment scenario of

a model. Gleicher provides strategies for accommodating comparison with visualiza-

tion, many of which could be used to compare model outputs [Gle18]. Interactivity

can be helpful in comparing multiple models and their predictions on a holdout set

of data. Zhang et. al. recently developed Manifold, a framework for interpreting

machine learning models that allowed for pairwise comparisons of various models

on the same validation data [ZWM+18]. Mühlbacher and Piringer [MP13] support

analyzing and comparing regression models based on visualization of feature depen-

dencies and model residuals. TreePOD [MLMP18] helps users balance potentially

conflicting objectives such as accuracy and interpretability of decision tree models

by facilitating comparison of candidate tree models.

The Snowcat system described in chapter 3 of this dissertation is primarily a

tool for model comparison, in this categorization. The RNNbow system described in

chapter 4 can be considered a system for both model explanation, since it visualizes

the model’s training and inference processes, as well as model debugging. The

REMAP system described in chapter 5 is a tool for model construction and steering.

Auger, described in chapter 6, aids in model construction and steering by allowing

the user to modify the training set on which a model learns its parameters.

2.4 Artifical Neural Networks

Artificial neural networks (ANNs) are a class of machine learning models that are in-

spired by the message passing mechanisms found between neurons in brains. ANNs

typically learn a sequence of linear transformations that excel at learning good

representations for modeling phenomena in data. In recent years, they have most

famously been applied to artificial intelligence tasks by learning from large datasets

of complex data such as images and text [LB+95, KSH12, LXLZ15]. In this disser-

tation, chapters 4 and 5 both address issues with training neural networks because

they are notoriously difficult to build and train [PMB13].
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Prior to the recent explosion in big-data neural networks, artificial neural

networks were generally small enough to allow for overview visualizations of all

nodes and edges in their computation graph. Early work in visualizing neural net-

work activity focused on “opening the black box” in this complicated computation

graph. A good example can be found in Tzeng and Ma’s work to display three-

layer networks as node-link diagrams, using the size and color of the nodes and

edges to encode activation magnitude and uncertainty [TM05]. As the number of

layers increases, such visualizations did not scale, and visualizations began to focus

on either aggregate views of activations on particular inputs, or by viewing inputs

that maximize activation of particular nodes [YCN+15]. Some visualizations of the

popular Convolutional Neural Network take advantage of the visual form of the

input space, integrating images into overviews of the node activations [LSL+17].

Some visualizations treat neural networks like other similar high-dimensional classi-

fiers, visualizing 2-D projections of their classifications to provide insight into their

decision boundaries [KAKC18].

2.4.1 Recurrent Neural Networks

Recurrent Neural Networks are a class of neural networks that are designed to take

sequential input and produce sequential output [HS97, Wer90]. Common use cases

include financial forecasting, language-to-language machine translation, and clinical

diagnoses [SPW98, POF01, LKEW15]. Because of their sequential nature, RNNs

proffer an opportunity for more concrete temporal visualizations. In an influential

blog post and accompanying publication [KJL15], Karpathy et al. used a variety

of visualizations that overlayed some representation of node activation over subsets

of the input space to show how different hidden nodes are responsible for different

decision logic. There has also been work in interpreting the hidden state dynamics of

a trained RNN [SGPR18, MCZ+17]. Their visualizations suggested that activations

in the hidden layer contain information about the length of memory in a model.

Most of the tools listed are used after training to attempt to render inter-

pretable the state of a trained network at test time. In contrast, the system described
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in chapter 4 is used to visualize how the network has learned. Thus, it could be

useful to view gradients during training, to know whether hyperparameters need to

evolve or if the experiment needs to be rerun with a different set of hyperparameters.

Mid-training visualization is one of the features of TensorBoard, a visualization tool

built on top of Google’s TensorFlow [AAB+15]. TensorBoard allows users to write

out values calculated during training to a log, and then generates basic visualiza-

tions, such as line graphs and bar charts, of those values throughout training. A

typical use case is to plot the loss of a network as a function of the number of batches

trained to confirm that the model is improving performance. While it would be pos-

sible to log gradients by patching the backpropagation calculation in a TensorFlow

project, there is minimal support for visualizing those gradients beyond line graphs

and bar charts at the time of writing. A recent work by Liu et. al. does visualize

the training process for deep generative models [LSC+18a] by plotting the data flow

of activations through layers accompanied by basic measures of performance such

as accuracy over time.

2.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of neural networks that use con-

volutional layers consisting of small local filters to exploit locality in input data,

first popularized by Lecun in the 90s and reinvigorated by the Imagenet competi-

tion in the most recent decade [LB+95, KSH12]. They have most famously been

applied successfully to image data because of the relevance of spatial locality to

semantic understanding of an image. In recent years, interest in neural networks

has exploded as they have proven to be state of the art algorithms for image classi-

fication [KSH12], text classification [LXLZ15], video classification [KTS+14], image

captioning [XBK+15], visual question answering [LYBP16], and a host of other clas-

sic artificial intelligence problems.

Visualization has been used in both the machine learning literature and the

visual analytics literature for understanding and diagnosing neural networks. In

particular, attempts have been made to explain the decision making process of
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trained networks. Saliency maps [SVZ13] and gradient-based methods [SDV+16]

were an early attempt to understand which pixels were most salient to a network’s

predictions in image classification networks. However, recent work has shown that

saliency maps may be dependent only on inherent aspects of the image and not

the network’s decision making, calling into doubt some of the truthfulness of such

methods [AGM+18]. Methods also exist which inspect the effect of individual lay-

ers on the decisions of the network [ZF14, YCN+15]. Lucid is a library built on

the Tensorflow machine learning library for generating various visualizations of net-

works [OSJ+18].

Visual analytics tools extend these techniques by offering interactive envi-

ronments for users to explore their networks. Some tools allow users to inspect

how various components of a trained network contribute to its predictions [LSL+17,

SGPR18, WGSY19, KAKC18, WSW+18], while others allow the user to build and

train toy models to understand the influence of various hyperparameter choices [SC,

KTC+19]. Other tools focus on debugging a network to determine which changes

must be made to improve its performance by viewing the activations, gradients,

and failure cases of the network [SGB+18, LSC+18b, PHVG+17]. Hohman et al.

provide a comprehensive overview of visual analytics for deep learning [HKPC18] .

All of these visual analytics tools presuppose that the user has selected an

architecture and wants to inspect, explain, or diagnose it. In contrast, the semi-

automated neural architecture search described in chapter 5 allows the user to dis-

cover a new architecture. A user of that system might take the discovered architec-

ture and then feed it into a tool such as DeepEyes to more acutely fine tune it for

maximal performance [PHVG+17].

2.5 Automated Machine Learning

Automated Machine Learning (AutoML) comprises a set of techniques designed to

automate the end-to-end process of ML. It supposes that, with a well-defined task,

a desired outcome (metric), and training data, autoML should be able to produce
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an optimal ML model without further human involvement. To accomplish this,

autoML techniques automate a range of ML operations, including but not limited to,

data cleaning, data pre-processing, feature engineering, feature selection, algorithm

selection and hyperparameter optimization [GBC+15]. The goal of autoML is to

hide the complex manipulation of these processes from the user, allowing them to

benefit from the use of advanced ml without expertise in statistics or ml.

Since autoML is a relatively recent advancement in the machine learning

community, the exact role and function of an autoML system are still undefined.

For example, some autoML engines include parts of the machine learning pipeline

while others don’t (e.g., automated data cleaning [VDR17]) Similarly, the inputs

and outputs of an autoML system have not been standardized. While all systems

require a formal task specification (including metrics) and training data as input,

the exact format of the specification is system-dependent. It is reasonable to expect

an autoML VA system to either work closely with their autoML backend developers,

as is our case, or to develop their own adapters for existing tools such as autoWeka

or CloudML. Further, what autoML should produce as an output is also unclear.

Beyond producing an “optimal” model and its performance metrics, some autoML

systems may produce the top k models. It could also be valuable for an autoML

system to allow further access into the modeling processes, such as the evaluations

used to produce the performance metrics (e.g., the details of the internal cross-fold

validations used during the model search). This information could be analyzed to

provide insight into what parts of the data are hardest to model.

To automatically produce a “best” model, autoML needs to search through a

large number of algorithms and their associated hyperparameters, potentially train-

ing each discovered model before sampling a new one. Posed as an optimization

problem, the goal of autoML is therefore to maximize the user-specified outcome

(or metric) quickly and efficiently.

Successful autoML systems attempt to use a better-than-random sampling

strategy to iteratively sample from the learning algorithm and hyperparameter

spaces. For example, Auto-WEKA [THHLB13, KTH+16] uses Bayesian optimiza-
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tion techniques to iteratively choose from a subset of the available learning algo-

rithms and hyperparameters in the Java-based WEKA machine learning tool [HFH+09].

Hyperopt [BYC13, KBE14] extends a similar technique by parallelizing the search

through model space, and interfacing with the Python-based scikit-learn [PVG+11]

machine learning library. Other autoML tools develop sophisticated prior beliefs on

which learning algorithms and hyperparameters work best on which datasets by

precomputing their performance on open source datasets [KSS16, SDC+17]. Then,

for a new dataset, they can sample from the model space according to where similar

datasets performed well.

While the goal of autoML is to hide the technical details of machine learning

from the user, in practice these systems are still out of the reach of most non-

technical users because the use of autoML requires significant knowledge about

machine learning or data science. For example, when performing a classification

task, the user needs to specify performance metrics such as area-under-the-curve

(AUC), F1 score, uncertainty coefficients, etc. as input to autoML. Similarly, it can

be difficult for a user to decide if a model resulting from autoML is good enough

and safe enough for their applied deployment because the autoML acts as a black

box (V2).

2.5.1 Neural Architecture Search

Algorithms for the automated discovery of neural network architectures were pro-

posed as early as the late 1980s using genetic algorithms [MTH89]. Algorithm

designers were concerned that neural networks were excessively hard to implement

due to their large parameter space and odd reaction to poor parameterizations. In

recent years, the success of CNNs and RNNs and their application to many artificial

intelligence problems has renewed interest in their use for applied machine learn-

ing problems. An increased interest in automated neural architecture searches has

followed, resulting in a variety of algorithms using Bayesian optimization [SLA12],

network morphisms [JSH18], or reinforcement learning [ZL16, BGNR16]. These

algorithms typically define the architecture space so that it is easily searchable

26



by classical parameter space exploration techniques, such as gradient-based opti-

mization [KNS+18, LSY18]. Elsken et al. provide a summary of new research in

algorithmic methods in a recent survey [EMH18].

Such methods are driven by an attempt to compete with state of the art

performant architectures such as ResNet [HZRS16] or VGGNet [SZ14] that were

carefully handcrafted based on years of incremental research in the community. Be-

cause performance has been the primary motivator, automated neural architecture

search algorithm designers have depended on expensive hardware setups using mul-

tiple expensive GPUs and very long search and training times [LSY18]. As a result,

the use of these algorithms is out of reach for many potential users without expen-

sive hardware purchases or large outlays to cloud machine learning services. They

also are subject to overfitting the training set (V1), and can be difficult to fine tune

to accommodate a domain expert’s understanding of risk (V2).

2.6 Data Augmentation

In the machine learning community, the goal of data augmentation is to expand

a training dataset so that as much of the phenomenon being modeled is present

as possible to try to address problems with learnability (V3). This is done in

two ways: adding objects (rows) to the training data, and adding new features

(columns) for the objects. For example, in image datasets, adding new objects in

the form of slightly modified versions of the training objects (i.e. rotating, adding

noise, cropping, modifying color) can improve a machine learning model’s ability to

generalize [KSH12, SK19, PW17, JWC+20, PC20].

Approaches to add columns to a dataset typically differ in where that data

comes from, and whether that data is used in training the model or in model in-

ference. Feature engineering [KV15] is a common method to derive new features

from existing columns by applying operations to them, such as the difference of two

columns. However, it is limited in that it can only express data that is in the scope

of existing attributes.
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Both automated and semi-automated tools for data augmentation aim to

mine large information repositories for useful data that can be included in analysis.

This applies to both row-wise and column-wise data augmentation.

2.6.1 Automated Approaches

Automated augmentation of datasets is of interest to the database and the data

science communities. In the database community, the goal of data augmentation

can manifest in many ways. For example, before augmentation can take place, the

first challenge is to find datasets that are suitable for joining. In this scenario,

sometimes referred to as a “data lake” [Mil18], the data joining system assumes

that there is a finite number of candidate datasets, and the task is to identify

which of them can be joined with a user’s base dataset. Systems such as Google

Goods [HKN+16], Infogather [YGCC12], Octopus [CHK09] Aurum [FAK+18], and

work by Sarma et al. [DSFG+12] examine the attributes of the candidate datasets

and learn the relationship between those attributes and the attributes of the input

data.

Another type of data augmentation appears in the form of entity matching.

Entity matching refers to finding the same entity in different datasets, often us-

ing machine learning techniques. Once identified, the entity can be removed (for

deduplication) or merged (for augmentation). Examples of entity matching systems

include Magellan [KDSG+16], Nadeef [DEE+13], Autojoin [ZHC17], and work by

Mudgal et al. [MLR+18].

What the data joining and entity matching approaches have in common is

that the systems assume little knowledge about the data. The challenge is there-

fore to identify the commonalities between the datasets (e.g. schema matching) to

determine if the datasets or the entities within are related and therefore joinable.

Knowledge graphs have recently been used to incorporate world knowledge

into machine learning models [SR17] for a range of models, including text process-

ing [ACD18], image classification [MSG17], and machine translation [MNNBA19],

but most work incorporates knowledge graphs into the last step of the machine learn-
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ing pipeline, inference, to gather facts, rather than augmenting an entire dataset.

The Python library RDFFrames [MAG+20] helps extract data from knowledge

graphs to improve machine learning training. It allows practitioners to effectively

express queries to knowledge graphs and execute them efficiently. However, it re-

quires extensive data science and programming experience to use.

While automated approaches can discover joinable attributes for a given

dataset, they lack semantic knowledge of expert users. This may result in a large

number of attributes that are irrelevant to the analysis problem being added to

the dataset, hindering the users in further analyzing and gaining insights from the

dataset. In addition, in common one-to-many relationships, joins require some user

guidance for aggregating a collection into a single value. In chapter 6, we overcome

these issues by involving a user in the process. Attributes are only added to the

dataset if the user decides that they are helpful for their analysis.

2.6.2 Interactive Visual Data Curation

Curating, improving, and augmenting an existing dataset is typically done to aid

interpretation and sensemaking [CNE17] during analysis. Sometimes referred to as

“data blending”, many commercial visualization systems, such as Tableau [var20e],

Alteryx [var20a], and D:Swarm [var20b] support it by allowing users to join data

tables. The Google Data Studio [var20c] and OpenRefine [var20d], both based on

the Webtables project [CHW+08], also support querying web APIs and integrating

data from them into a table. In contrast to our approach, none of these tools

supports users with discovering new data for augmentation in a systematic way.

Users have to find additional data on their own before they can join it to the base

dataset.

Other visual interactive approaches allow users to use and integrate data

from heterogeneous web sources. This includes helping users extract information

from textual web sources [HSV+17], query knowledge graphs [HGVS14], or auto-

matically create visual representations of information stored in knowledge graphs.

VAiRoma helps users extract and combine information from Wikipedia articles to
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create visualizations that provide insight into historical events [CDW+15]. Vis-

pedia [CWT+08] lets users interactively collect and integrate data from Wikipedia

tables to create visualizations and answer analysis questions. All of these approaches

help users access information stored in different forms, but they don’t join to tables

of data for the purpose of improving an applied machine learning task.

Tools for data wrangling, such as Wrangler, help users to interactively iden-

tify data quality problems, and fix them to improve their datasets [KPHH11]. Data

wrangling is an important step towards integrating data from diverse sources [SBI+13].

In this dissertation, we largely leave issues of data wrangling to future research, and

focus on the pressing need for the discovery of relevant attributes and their extrac-

tion from knowledge graphs. The resulting datasets could then be fed into a tool

like Wrangler.

Data improvement and curation tasks are also supported as part of creating

and analyzing machine learning models. Some approaches directly allow users to add

and modify data by providing labels or corrections for train or test data [HKBE12a,

LSD19, MGB+19]. Other systems support identifying mislabeled [RAL+17, BJY+17,

SGB+18] or generally low quality instances [MP13, GBYH20] for a range of differ-

ent model types. In chapter 6, we instead help users improve a dataset by adding

relevant high-quality data columns to the entire dataset.
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Chapter 3

Exploratory Model Analysis

In this chapter, I describe a visual analytics workflow that enables subject matter

experts to discover machine learning models for applied machine learning problems.

Users can upload a dataset, explore it through various visualizations, and generate

and inspect models that can be trained on that dataset. The end of the workflow

consists of selecting a model to export from a list of models generated and trained

by a fully automated machine learning algorithm. Rather than letting the machine

make the final decision and simply choosing the model that scored the highest on a

validation set according to some metric, this workflow presents visualizations of the

behaviors of the different models, and lets the user determine which trained model

might generalize best.

By exploring both data and model predictions, users can get a sense of which

models are learning about the portions of data that they believe to be important

in the model’s eventual deployment. They can also tell if models are overfitting

particular aspects of the distribution of the training set by exploring and filtering

the data. This can inform their choice of model, and allow them to implicitly address

the domain mismatch vulnerability (V1).

While the workflow describes all steps a user would follow to export a model,

including initial data exploration, exploration of the problem space, and problem

specification, only the final steps in which the user explores and compares the trained

models comprise the user’s role in model selection that addresses domain mismatch.
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Figure 3.1: The proposed EMA visual analytics workflow for discovery and genera-
tion of machine learning models. In step 1, the system uses interactive visualiza-
tions (such as histograms or graphs) to provide an initial data overview. The system
then generates a number of possible modeling problems based on analyzing the data
set (step 2) from which the user analyzes and selects one to try (step 3). Next,
(step 4) an automated ML system trains and generates candidate models based on
the data set and given problem. In step 5, the system shows comparisons of the
generated prediction models through interactive visualizations of their predictions
on a holdout set. Lastly, in step 6, users can select a number of preferable models,
which are then exported by the system during step 7 for predictions on unseen test
data. At any time, users can return to step 3 and try different modeling problems
on the same dataset.

32



However, for posterity, we reproduce the entire workflow because the model selection

portion was only one requirement of the research project.

To evaluate the workflow, I built a software tool, called Snowcat, for allowing

subject matter experts to discover machine learning models to predict on a data

source. This tool was planned and built with the help of many advisors and fellow

researchers1, and was part of a larger effort in DARPA’s data driven discovery of

models project. The concepts explored in this chapter were largely influenced by

conversations with other performers in this project, and I am indebted to them for

their work and discussions.

In section 3.3.3, I present findings from a user study which provide evidence

that the final steps of a workflow enable a user to address the domain mismatch

vulnerability. Given a dataset and a specific machine learning problem, participants

are able to choose a machine learning model that performed better than a model

chosen by an automated machine learning algorithm. This shows that exploratory

modeling facilitated by the workflow described in this chapter can allow a user to find

a better solution to an applied machine learning problem than a machine learning

algorithm alone.

3.1 Exploratory Model Analysis

Exploratory data analysis (EDA) has long been recognized as one of the main com-

ponents of visual analytics [CT05]. EDA is an analysis process through which a

user “searches and analyzes databases to find implicit but potentially useful infor-

mation” [KMSZ06], with the use of an interactive visual interface. As described

by Tukey, the process of data exploration helps users to escape narrowly assumed

properties about their data and allows them to discover patterns and characteristics

that were not previously known [Tuk77]. In this sense, the goal of EDA and the

use of traditional visual analytics systems is to help the user gain early insight into

1While I use first person pronouns to describe work in this chapter, there were many people who
worked on this project. A complete list of collaborators in the project is given by the author list
of the corresponding publication [CHH+19c]. Significant engineering in addition to my own efforts
was done in particular by Shah Rukh Humayoun, Subhajit Das, and Florian Heimerl.
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their data [Nor06, CZGR09].

However, in the modern era of big data, machine learning, and AI, visual

analytics systems have begun to take on a new role: to help the user in refining ma-

chine learning models. Systems such as TreePOD [MLMP18], BEAMES [DCCE19],

and Seq2SeqVis [SGB+18] propose new visualization and interaction techniques not

for a user to better understand their data, but to understand the characteristics of

the machine learning models trained on their data and the effects of modifying their

parameters and hyperparameters. The goal of these visual analytics systems is to

produce a predictive model which will then be used on unseen data.

These systems help analyze and refine a particular type of model with a

predefined modeling goal. This limits their ability to support an exploratory analysis

process since the user cannot try multiple modeling problems in the same system,

and instead are confined to decision trees, regressions, and sequence-to-sequence

models, respectively. In this chapter, I consider a previously unsupported scenario

in which the type of model and the modeling task is not known at the beginning of

the analysis. I introduce the term Exploratory Model Analysis (EMA), and define it

as the process of exploring the set of potential models that can be trained on a given

set of data. EMA shares characteristics with EDA in that both describe an analysis

process that is open-ended and whose results are not clearly defined a priori, and

may change and adapt during the process.

The goal of EMA is twofold: discover variables in the dataset on which

reliable predictions can be made, and find the most suitable and robust types of

models to predict these variables. There may be multiple models discovered at the

end of the process - an analyst may end up discovering regression models between

variables a, b, and c, classification models where variables d and e predict the label

of variable f , and neural networks that use all independent variables to predict the

value of variable g.

Despite the parallels between the two, the analysis processes that EDA and

EMA describe are applicable to different sets of analysis scenarios. To illustrate

the difference, consider two users of visual analytics systems in a financial services
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company: a broker, who must be able to explain the current state of the market,

in the context of its near present and past, and the quantitative analyst, who must

be able to model the future behavior of the market. The broker may use machine

learning models to support their exploration of the data, but their ultimate goal is

to understand current patterns in the data, so that they can make decisions in the

current market landscape. In contrast, the quantitative analyst might be interested

in what types of predictions are possible given the data being collected, and beyond

that, which types of predictions are robust. Exploratory data analysis might expose

some information that is predictive, such as the correlation between features, but for

large and complex datasets, complex modeling is needed to make sufficiently robust

predictions. The use of my visual analytics workflow can help the quantitative

analyst to try different types of models and explore the model space.

In this example, there are two distinctions between these two users: (1)

their intended goals, and (2) how data is used in the process. For the broker, the

intended outcome of using visual analytics is a decision, a data item (e.g. in an

anomaly detection task), or an interesting pattern within the data. The data is

therefore the focus of the investigation. On the other hand, for an analyst, the

intended outcome is a model (or set of models), its hyperparameters, and properties

about its predictions on held out data. The data is used to train and validate the

model. It is not in itself the focus of attention.

While there is a plethora of tools and techniques in the visual analytics lit-

erature that support using machine learning models, most existing workflows (such

as the visual data-exploration workflow by Keim et al. [KAF+08], the knowledge

generation model by Sacha et al. [SSS+14], the economic model of visualization

by van Wijk [VW05], and four out of the six workflows described by Chen and

Golan [CG16]) focus on the exploration and analysis of data, rather than the dis-

covery of the model itself. These workflows presuppose that the user knows what

their modeling goal was (e.g. using a regression model to predict the number of

hours a patient will use a hospital bed). Although these workflows (and the many

visual analytics systems built following these workflows) are effective in helping a
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user in data exploration tasks, I note that there is often an earlier step of modeling

where users do not yet know what types of models can be built from a data source.

Model exploration is an important aspect of data analysis that is underrepresented

in visual analytics workflows. By exploring many different models and their predic-

tions concurrently, users are able to discover which learning algorithm best matches

the properties of the data that they deem important.

The primary contribution of this work is a workflow for EMA that supports

model exploration and selection. I first identified a set of functionality and design

requirements needed for EMA through a pilot user study. These requirements are

then synthesized into a step-by-step workflow (see Figure 3.1) that can be used

to implement a system supporting EMA. To validate our proposed workflow for

exploratory model analysis, I developed a prototype visual analytics system for

EMA and ran a user study with nine data modelers. I report the outcomes of this

study and also present two use cases of EMA to demonstrate its applicability and

utility. I also report the results of a blind experiment conducted by the National

Institute of Standards and Technology (NIST) in which a domain expert using our

tool chose a better performing machine learning model than both a fully-automated

tool and a machine learning expert.

To summarize, in this chapter we describe the following contributions to the

visual analytics community:

• Definition of exploratory model analysis: We introduce the notion of

exploratory model analysis and propose an initial definition.

• Workflow for exploratory model analysis: Based on a pilot study with

users, we developed a workflow that supports exploratory model analysis.

• User studies that validate the efficacy and feasibility of the work-

flow: We developed a prototype visual analytics system based on our proposed

workflow and evaluated its efficacy with domain expert users. We also present

two use cases to illustrate the use of the system.
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3.2 A Workflow for Exploratory Model Analysis

The four types of modeling described above all presuppose that the user’s modeling

task is well-defined: the user of the system already knows what their goal is in

using a model. I contend that our workflow solves a problem that is underserved

by previous research - Exploratory Model Analysis (EMA). In EMA, the user seeks

to discover what modeling can be done on a data source, and hopes to export

models that excel at the discovered modeling tasks. Some of the cited works do

have some exploratory aspects, including allowing the user to specify which feature

in the dataset is the target feature for the resulting predictive model. However, to

the best of my knowledge, no existing system allows for multiple modeling types,

such as regression and classification, within the same tool.

Beyond the types of modeling outlined above, there are two new requirements

that must be accounted for. First, EMA requires an interface for modeling problem

specification - the user must be able to explore data and come up with relevant

and valid modeling problems. Second, since the type of modeling is not known a

priori, a common workflow must be distilled from all supported modeling tasks. All

of the works cited above are specifically designed towards a certain kind of model,

and take advantage of qualities about that model type (i.e. visualizing pruning for

decision trees). To support EMA, an application must support model discovery and

selection in a general way.

In this section, I describe our method for developing a workflow for EMA.

I adopt a user-centric approach that first gathers task requirements for EMA fol-

lowing similar design methodologies by Lloyd and Dykes [LD11] and Brehmer et

al. [BISM14]. Specifically, this design methodology calls for first developing a pro-

totype system based on best practices. Feedback by expert users are then gathered

and distilled into a set of design or task requirements. The expert users in this feed-

back study were identified by the National Institute of Standards and Technology

(NIST) and were trained in data analysis. Due to confidentiality reasons, I do not

report the identities of these individuals.
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3.2.1 Prototype System

My goal in this initial feedback study was to distill a common workflow between

two different kinds of modeling tasks. Our initial prototype system for supporting

exploratory model analysis allowed for only two types of models – classification, in

which the model is asked to predict a label for each instance, and regression, in

which the model predicts a scalar for each instance. The design of this web-based

system consisted of two pages using tabs, where on the first page, a user sees the

data overview summary through an interactive histogram view. Each histogram in

this view represented an attribute/field in the data set, where the x-axis represented

the range of values while the y-axis represented the number of items in each range

of values. On the second tab of the application, the system showed a number of

resulting predicted models based on the underlying data set. A screenshot of the

second tab of this prototype system is shown in Figure 3.2.

Classification models were shown using scatter plots, where each scatter plot

showed the model’s performance on held out data, projected down to two dimen-

sions. Regression models were visualized using bar charts, where each vertical bar

represented the amount of residual and the shape of all the bars represents the

model’s distribution of error over the held out data.

Figure 3.2: A prototype EMA visual analytics system used to determine task re-
quirements. Classification is shown in this figure. During a feedback study with
expert users, participants were asked to complete model selection tasks using this
view. This process is repeated for regression models (not shown). Feedback from
this prototype was used to distill common steps in model exploration and selection
across different model types.
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3.2.2 Task Requirements

I conducted a feedback study with four participants to gather information on how

users discover and select models. The goal of the study was to distill down com-

monalities between two problem types, classification and regression, in which the

task was to export the best predictive model. Each of the four participants used

the prototype system to examine two datasets, one for a classification task and the

other for regression. Participants were tasked with exporting the best possible pre-

dictive model in each case. The participants were instructed to ask questions during

the pilot study. Questions as well as think-aloud was recorded for further analysis.

After each participant completed their task, they were asked a set of seven open-

ended questions relating to the system’s workflow, including what system features

they might use for more exploratory modeling. The participants’ responses were

analyzed after the study and distilled into a set of six requirements for exploratory

model analysis:

• G1: Use the data summary to generate prediction models: Exploration of the

dataset was useful for the participants to understand the underlying dataset.

This understanding can then be transformed into a well-defined problem spec-

ification that can be used to generate the resulting prediction models. Visu-

alization can be useful in providing easy exploration of the data, and cross-

linking between different views into the dataset can help facillitate understand-

ing and generate hypotheses about the data.

• G2: Change and adjust the problem specification to get better prediction mod-

els: Participants were interested in modifying the problem specifications to

change the options (e.g., performance metrics such as accuracy, f1-macro, etc.

or the target fields) so that they would get more relevant models. The insights

generated by visual data exploration can drive the user’s refinements of the

problem specification.

• G3: Initially rank the resulting prediction models: Participants were inter-
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ested to see the ranking of prediction models based on some criteria, e.g.,

a performance metric. The ranking should be meaningful to the user, and

visualizations of models should help explain the rankings.

• G4: Determine the most preferable model, beyond the initial rankings: In

many cases, ranking is not enough to make judgment of the superior model.

For example, in a classification problem of cancer related data, two models

may have the same ranking based on the given accuracy criteria. However,

the model with fewer false negative predictions might be preferable. Visualiza-

tions can provide an efficient way to communicate the capabilities of different

models; even simple visualizations like colored confusion matrices offer much

more information than a static metric score.

• G5: Compare model predictions on individual data points in the context of

the input dataset: Information about the model’s predictions, such as their

accuracies or their error, were difficult to extrapolate on without the con-

text of individual data instances they predicted upon. Users suggested that

having the data overview and the model results on separate tabs of the sys-

tem made this difficult. Users want to judge model predictions in coordi-

nation with exploratory data analysis views. Model explanation techniques

such as those linking confusion matrix cells to individual data instances of-

fer a good example of tight linking between the data space and the model

space [ZWM+18, ACD+15, RAL+17].

• G6: Transition seamlessly from one step to another in the overall workflow:

Providing a seamless workflow in the resulting interface helps the user to

perform the different tasks required in generating and selecting the relevant

models. The system should guide the user in the current task as well as to

transition it to the next task without any extra effort. Furthermore, useful de-

fault values (such as highly relevant problem specifications or the top ranked

predictive model) should be provided for non-expert users so that they can

finish at least the default steps in the EMA workflow. Accompanying visu-
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alizations that dynamically appear based on the current workflow step can

provide easy-to-interpret snapshots of what the system is doing at each step.

It should be noted that the distilled set of requirements does not include partici-

pants’ comments relating to data cleaning, data augmentation, or post-hoc manual

parameters tuning of the selected models. While they are important to the users

and relevant to their data analysis needs, these topics are familiar problems in visual

analytics systems and are therefore omitted from consideration.

3.2.3 Workflow Design

Based on the six identified task requirements, I propose a workflow as shown in

Figure 3.1. The workflow consists of seven steps that are then grouped into three

high-level tasks: data and problem exploration, model generation, and model ex-

ploration and selection. Below, I detail each step of the workflow.

Step 1 – Data Exploration: In response to G1, I identify data exploration as a

required first step. Before a user can explore the model space, they must understand

the characteristics of the data. Sufficient information needs to be presented so that

the user can make an informed decision as to which types of predictions are suitable

for the data. Furthermore, the user needs to be able to identify relevant attributes

or subsets of data that should be included (or avoided) in the subsequent modeling

process.

Step 2 – Problem Exploration: In response to G1 and G2, I also identify

the need of generating automatically a valid set of problem specifications. These

problem specifications give the user an idea of the space of potential models, and

they can use their understanding of the data from Step 1 to choose which are most

relevant to them.

Step 3 – Problem Specification Generation: In response to G2 and G3, I

identify the need of generating a valid, machine-readable final set of problem speci-

fications after the user explores the dataset and the automated generated problem

specifications set. A EMA visual analytic system needs to provide the option to user
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to refine and select a problem specification from the system generated set or to add

a new problem specification. Furthermore, the user should also be able to provide

or edit performance metrics (such as accuracy, F1-score, mean squared root, etc.)

for each problem specification.

Step 4 – Model Training and Generation: The generated problem specifica-

tions will be used to generate a set of trained models. Ideally, the resulting set of

models should be diverse. For example, for a classification problem, models should

be generated using a variety of classification techniques (e.g. SVM, random forest,

kNN, etc.). Since these techniques have different properties and characteristics, cast-

ing a wide net will allow the user to better explore the space of possible predictive

models in the subsequent EMA process.

Step 5 – Model Exploration: In response to G3, I identify the need of present-

ing the resulting predictive models in some ranked form (e.g., based on either used

performance metric or the time required in generating the model). An EMA visual

analytics system needs to present the resulting models through some visualizations,

e.g., a confusion matrix for a classification problem type or a residual bar chart for

regression problem type (see Fig. 3.1(5)), so that the user can explore predictions

of the models and facillitate comparisons between them. I also identify from G5

that cross-linking between individual data points in a model and data exploration

visualization would be useful for the user to better understand the model. It should

be noted that a prerequisite for model exploration is to present models in an in-

terpretable encoding, and the available encoding depends on the types of models

being explored. Lipton posited that there are two types of model interpretability:

transparency, in which a model’s internal decision-making can be inspected, and

post-hoc interpretability, in which a model is interpreted via its predictions on held

out data [Lip16]. In our workflow, because I aim to allow for any type of model, it

is difficult to compare wildly different parts of the model space (a kNN model vs. a

deep learning model) based on their structure. Instead, I favor a post-hoc approach,

where the models are explored via their predictions.

Step 6 – Model Selection: In response to G4 and G5, I identify the need for
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selecting the user’s preferred models based on the model and data exploration. An

EMA visual analytics system needs to provide the option to the user to select one

or more preferable models in order to export for later usage.

Step 7 – Export Models: In response to G4, I also identify that the user also

requires to export the selected preferable models so that they can use them for

future predictions.

Finally, I identify from the response of G6 that an EMA visual analytic

system needs to make sure that the transition from one workflow step to another

one should be seamless. I assume that any implementation of our proposed EMA

workflow in Figure 3.1 should supply such smooth transitions so that a non-expert

user would also be able to finish the workflow from start to end.

3.3 Iterative System Design and Evaluation

Model	Types

D
at
a
Ty
pe
s

Classification Regression Clustering Link	
Prediction

Vertex	
Nomination

Community	
Detection

Graph	
Clustering

Graph	
Matching

Time	Series	
Forecasting

Collaborative
Filtering

Tabular ✔ ✔ ✔ X X X X X X ✔

Graph ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ X ✔

Time	Series ✔ ✔ ✔ X X X X X ✔ ✔

Texts ✔ ✔ ✔ X X X X X X ✔

Image ✔ ✔ ✔ X X X X X X ✔

Video ✔ ✔ ✔ X X X X X X ✔

Audio ✔ ✔ ✔ X X X X X X ✔

Speech ✔ ✔ ✔ X X X X X X ✔

Table 3.1: List of all model types and data types supported by our experimental
system. A check mark indicates if a model type can be applied to a particular data
type, while a cross mark is used to denote incompatible matching between data and
model types.

To validate our visual analytics workflow for EMA, I performed two rounds

of iterative design and evaluation of the initial prototype system. First, I describe

the updated system used in the evaluation. Due to confidentiality concerns, the

screenshots shown in this chapter use a set of publicly available datasets2 that are

different from the data examined by the subject matter experts during the two

2https://gitlab.com/datadrivendiscovery/tests-data
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rounds of evaluations.

3.3.1 Redesigned EMA System

My redesigned system used for the study significantly differs from the original pro-

totype in three important ways. First, it fully supports the workflow as described

in the previous section, including Problem Exploration and Problem Specification

Generation. Second, the new system supports 10 types of models (compared to the

prototype that only supported two). Lastly, in order to accommodate the diverse

subject matter experts’ needs, our system was expanded to support a range of in-

put data types. Table 3.1 lists all of the supported model and data types of our

redesigned system.

From a visual interface design standpoint, the new system also appears dif-

ferently from the prototype. The key reason for the interface redesign is to provide

better guidance to users during the EMA process, and to support larger number of

data and model types. We realized during the redesign process that the UI of the

original prototype (which used tabs for different steps of the analysis) would not

scale to meet the requirements of addressing the seven steps of the EMA workflow.

Figure 3.3 shows screenshots of components of the system that highlight the

system’s support for guiding the user through the steps of the EMA workflow. The

visual interface consists of two parts (see Fig. 3.3, where I provide the overall system

layout in the center). The workflow-panel (see Fig. 3.3(a)), positioned on the left

side of the system layout, shows the current level and status of workflow execution.

On the right side of the system layout, the card-panel consists of multiple cards

where each card targets a particular step described in the EMA workflow.

Visualization Support for Data Exploration:

For step one of the workflow, data exploration, the system renders several cards

providing an overview of the dataset. This includes both a dataset summary card

containing any metadata available, such as dataset description and source, as well as

cards with interactive visualizations for each data type in the dataset (a few examples

are provided in Fig. 3.1(a) and in Fig. 3.3(b)). Currently, the system supports eight
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Figure 3.3: Components of the experimental system. The box in the center shows the
system layout, which consists of two parts, the left-side workflow panel and the right-
side card panel. (a) shows EMA workflow at different stages in the experimental
system, (b) shows three examples of data visualization cards, and (c) shows two
examples of model visualization cards.

input data types: tabular, graph, time-series, text, image, video, audio, and speech.

Datasets are taken in as CSVs containing tabular data that can point to audio or

image files, and rows can contain references to other rows, signifying graph linkages.

Data types (e.g., numeric, categorical, temporal, or external references) are explicitly

provided - the system does no inference of data types. If a dataset contains multiple

types of data, the system a specifically designed card for each type of data. In all

cases, the user is also provided a searchable, sortable table showing the raw tabular

data. All data views are cross-linked to facilitate insight generation. To limit the

scope of the experimental system, our system is not responsible for data cleaning

or wrangling, and it assumes that these steps have already been done before the

system gets the data.

For example, in the case of only tabular data a set of cross-linked histograms

are provided (see Fig. 3.3(b)), empowering the user to explore relationships between

features and determine which features are most predictive. Furthermore, a search-

able table with raw data fields is also provided. For graph data, node-link diagrams

are provided (see Fig. 3.3(b)). Temporal data is displayed through one or more time-
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series line charts (see Fig. 3.3(b)), according to the number of input time-series. For

textual data, the system shows a simple searchable collection of documents to allow

the user to search for key terms. Image data is displayed in lists sorted by their la-

bels. Audio and speech files are displayed in a grid-list format with amplitude plots,

and each file can also be played in the browser through the interface. Video files

are also displayed in a grid-list format, and can be played in the browser through

the interface as well. In the case of an input dataset with multiple types of data,

such as a social media networks where each row in the table references a single node

in a graph, visualizations are provided for both types of data (e.g., histograms for

table and node-link diagrams for graphs) and are cross-linked via the interaction

mechanisms (i.e., brushing and linking). The exact choices for visual encodings for

input dataset types are not contributions of this chapter, and so mostly standard

visualizations and encodings were used.

Problem Specification Generation and Exploration:

After data exploration, the user is presented with a list of possible problem spec-

ifications depending on the input dataset (step 2, problem exploration in the

EMA workflow). This set is auto-generated by first choosing each variable in the

dataset as the target variable to be predicted, and then generating a problem spec-

ification for each machine learning model type that is valid for that target variable.

For example, for a categorical target variable, a classification problem specification

is generated. For a numeric target variable, specifications are generated for both

regression and collaborative filtering. Table 3.1 shows the relationships between an

input dataset and the possible corresponding model types supported in our system.

The system also generates different problem specifications for each metric valid for

the problem type and the type of predicted variable (e.g., accuracy, f1 score, pre-

cision). Together, the target prediction variable, the corresponding model type,

metrics, and features to be used for predicting the target prediction variable make

up a problem specification.

The user can select interesting problem specifications from the system-generated

list of recommendations, and refine them by removing features as predictors. Users
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can also decide to generate their own problem descriptions from scratch, in case non

of the system-generated suggestions fit the their goals. In either case, the next step

of the EMA workflow is for the user to finalize the problem specifications (see

Fig. 3.1(3)). The resulting set of problem specifications is then used by backend

autoML systems to generate the corresponding machine learning models.

Visualization Support for Model Exploration and Selection:

Our system’s support for model generation (step 4 of the EMA workflow) relies

on the use of an automated machine learning (autoML) library, developed under the

DARPA D3M program [She]. These autoML systems are accessible through an open

source API3 based on the gRPC protocol4. An autoML system requires the user to

provide a well-defined problem specification (i.e., the target prediction variable, the

model type, the list of features to be used for training the model, the performance

metrics) and a set of training data. It then automatically searches through a collec-

tion of ML algorithms and their respective hyperparameters, returning the “best”

models that fit the user’s given problem specification and data. Different autoML

libraries such as AutoWeka [THHLB13, KTH+16], Hyperopt [BYC13, KBE14], and

Google Cloud AutoML [LL] are in use either commercially or as open source tools.

Our system is designed to be compatible with several autoML libraries under the

D3M program, including [JSH18, SSW+18]. Note that the sampling of models is

entirely driven by the connected autoML systems, and our system does not encode

any instructions to the autoML systems beyond the problem specification chosen by

the user. However, the backends we connect to generate diverse, complex models,

and automatically construct machine learning pipelines including feature extraction

and dimensionality reduction steps.

Given the set of problem specifications identified by the user in the previous

step, the autoML library automatically generates a list of candidate models. The

candidate models are then visualized in an appropriate interpretable representation

of their predictions, corresponding to the modeling problem currently being explored

3https://gitlab.com/datadrivendiscovery/ta3ta2-api
4https://grpc.io/
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by the user (step 5, model exploration). All types of classification models, includ-

ing multiclass, binary, and variants on other types of data such as community de-

tection, are displayed to the user as interactive confusion matrices (see Fig. 3.3(c)).

Regression models and collaborative filtering models are displayed using sortable

interactive bar charts displaying residuals (see Fig. 3.3(c)). Time-series forecast-

ing models are displayed using line charts with dotted lines for predicted points.

Cross-linking has been provided between individual data points on these model vi-

sualizations and the corresponding attributes in the data exploration visualizations

of the input dataset. Furthermore, cross-linking between the models has also been

provided to help the user in comparing between the generated models.

Our system initially shows only the highest ranked models produced by the

autoML library, as the generated models could be in the hundreds in some cases.

This ranking of models is based on the user selected metric in the problem specifi-

cation.

After a set of suggested models had been generated and returned by the

autoML engine, the system provides views to inspect the model’s predictions on

holdout data. Using this information, they select one or more specific models and

request the autoML library to export the selected model(s) (Steps 6 and 7, model

selection and export models).

3.3.2 Evaluation

To evaluate the validity of our proposed EMA workflow and the efficacy of the

prototype system, we conducted three rounds of evaluations. Similar to the feedback

study, the participants of these rounds of evaluation were also recruited by NIST. In

the first two rounds of evaluation, participants tried out the full EMA workflow to

discover machine learning problems and export models. Afterward we were able to

interview participants after they completed their tasks to get additional qualitative

feedback. For the last round of evaluation, a blind evaluation was held explicitly to

compare fully automated model selection with the human-in-the-loop approach of

the last 3 steps of our workflow. Due to sensitivity of the research, NIST did not

48



allow us access to the participants afterwards, or provide access to the data.

Five subject matter experts participated in the first round of evaluation, four

participated in the second, and three in the third. One participant in the second

round was unable to complete the task due to connectivity issues. None of the

experts participated in both studies (and none of them participated in the previous

feedback study). The three groups each used different datasets, in an aim to test

out the workflow in differing scenarios.

Method: For the first two experiments, several days prior to each experiment, par-

ticipants were part of a teleconference in which the functioning of the system was

demonstrated on a different dataset than would be used in their evaluation. They

were also provided a short training video [CHH+19b] and a user manual [CHH+19a]

describing the workflow and individual components of the system they used. Par-

ticipants of the third experiment were not included in the teleconference, but did

get access to the training materials.

For the evaluation, participants were provided with a link to a web interface

through which they would do their EMA. They were asked to complete their tasks

without asking for help, but were able to consult the training materials at any

point in the process. The modeling specifications discovered by users were recorded,

as well as any exported models. After completing their tasks, participants were

given an open-ended questionnaire about their experience. After the first round

of evaluation, some user feedback was incorporated into the experimental system,

and the same experiment was held with different users and a different dataset. All

changes made to the experimental system were to solve usability issues, in order to

more cleanly enable users to follow the workflow presented in this chapter.

Tasks: In all three evaluation studies, participants were provided with a dataset

on which they were a subject matter expert. They were allowed to explore the

data and complete their tasks at any time within a 24-hour period. The first two

evaluation studies started with a task to explore the model space and generate model

specifications. The first task was to explore the given dataset and come up with a set

of modeling specifications that interested them. All three evaluations did the next
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Dataset Problem Type Metric autoML Score EMA Score (Ours)
News&Events Classification Accuracy 0.89707928 0.90472879
Sensor Data Regression MSE 19.8853693 9.440946857

Table 3.2: Results from an experiment comparing a model found by a subject matter
expert using the Snowcat system verse a model found by a fully automated tool
(autoML). Across two datasets, each with a different modeling problem, our system
allowed a subject matter expert to discover a better model than the autoML system.
Scores reported were average across three participants.

task. The second task supplied them with a problem specification, and asked them

to produce a set of candidate models using our system, explore the candidate models

and their predictions, and finally choose one or more models to export with their

preference ranking. Their ranking was based on which models they believed would

perform the best on held out test data. The two tasks taken together encompass

the workflow proposed in this chapter. The problem specifications discovered by

participants were recorded, as well as the resulting models with rankings exported

by the participants.

3.3.3 Findings

Human in the Loop Model Selection First, I report on the quantitative results

from the third experiment, because it is most relevant to the domain mismatch

vulnerability and discussion of this larger document. In this experiment, subject

matter experts were asked to use our system to choose a machine learning model

from a set of models produced from an automated machine learning algorithm that

they believed would perform the best on held out data. The model chosen by

our users was evaluated on held out data, and compared against both a baseline

model handcrafted by a machine learning expert and the highest ranked model

produced by the automated machine learning algorithm, according to metrics on a

validation dataset. The automated machine learning algorithms were developed by

other members of the DARPA d3m program. Results can be found in Table 3.2.

Across two different datasets, models chosen by the automated tools performed

better than the handcrafted baselines. But our subject matter experts were able
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to select models that performed even better than the models chosen by automated

tools.

To interpret these findings, I first note that the baseline our human users

were judged against was a high baseline - the automated machine learning backend

discovered and selected a model that far outperformed a handcrafted baseline model.

Our users selected a model that outperformed that baseline, which is impressive.

But it’s also important to understand the narrow scope of the choices available

to the users to make this selection. The automated machine learning algorithm

generates a number of models, and returns them to the user, ranked according

to their performance on a validation set. The baseline model, then, is the one

that performed the best on the validation set, and according to the treatment of

empirical risk minimization given in the introduction of this dissertation, that model

should probably be the model that performs best on held out data. But using our

system, the participants of the study identified that one of the other models, with

worse performance on the validation set, would be a better choice for held out data.

Something that they were able to see in our visualizations helped them identify

qualities about the model that were not visible to the automated machine learning

algorithm.

Efficacy of workflow: Next, I report qualitative results from the first two exper-

iments. All participants were able to develop valid modeling problems and export

valid predictive models. Participants provided answers to a survey asking for their

top takeaways from using the system to complete their tasks. They were also asked

if there were additional features that were missing from the workflow of the system.

I report common comments on the workflow, eliding comments pertaining to the

specific visual encodings used in the system.

Participants felt that the workflow was successful in allowing them to gener-

ate models. One participant noted that the workflow “...can create multiple models

quickly if all (or most data set features are included... [the] overall process of gener-

ating to selecting model is generally easy”. Another participant agreed, stating that

“The default workflow containing comparisons of multiple models felt like a good
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conceptual structure to work in.”

The value of individual stages of the workflow were seen as well: “The prob-

lem discovery phase is well laid out. I can see all the datasets and can quickly scroll

through the data”. During this phase, participants appreciated the ability to use

the various visualizations in concert with tabular exploration of the data, with one

participant stating that “crosslinking visualizations [between data and model predic-

tions] was a good concept”, and another commenting that the crosslinked tables and

visualizations made it “very easy to remove features, and also simple to select the

problem.”

Suggestions for implementations: Participants were asked what features they

thought were most important for completing the task using our workflow. I high-

light these so as to provide guidance on the most effective ways to implement our

workflow, and also to highlight interesting research questions that grow out of tools

supporting EMA.

Our experimental system allowed for participants to select which features

to use as predictor features (or independent variables) when specifying modeling

problems. This led several participants to desire more sophisticated capabilities for

feature generation, to “create new derivative fields to use as features”.

One participant noted that some of the choices in generating problem speci-

fications were difficult to make without first seeing the resulting models, such as the

loss function chosen to optimize the model. The participant suggested that, rather

than asking the user to provide whether root mean square error or absolute error is

used for a regression task, that the workflow “have the system combinatorically build

models for evaluation (for example, try out all combinations of “metric”)”. This

suggests that the workflow can be augmented by further automating some tasks.

For example, some models could be trained before the user becomes involved, to

give the user some idea of where to start in their modeling process.

The end goal of EMA is one or more exported models, and several par-

ticipants noted that documentation of the exported models is often required. One

participant suggested the system could “export the data to include the visualizations
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in reports”. This suggests that an implementation of our workflow should consider

which aspects of provenance it would be feasible to implement, such as those ex-

pounded on in work by Ragan et al. [RESC16], in order to meet the needs of data

modelers. Another participant noted that further “understanding of model flaws”

was a requirement, not only for the sake of provenance, but also to aid in the ac-

tual model selection. Model understandability is an open topic of research [Gle13],

and instance-level tools such as those by Ribeiro et al. [RSG16] and Krause et

al. [KDS+17] would seem to be steps in the right direction. Lastly, it was noted

that information about how the data was split into training and testing is very rele-

vant to the modeler. Exposing the training/testing split could be critical if there is

some property in the data that makes the split important (i.e. if there are seasonal

effects in the data).

Limitations of the Workflow: The participants noted that there were some

dangers in developing a visual analytics system that enabled exploratory modeling,

noting that “simplified pipelines like those in the task could very easily lead to se-

rious bias or error by an unwary user (e.g. putting together a causally nonsensical

model)”. The ethics of building tools that can introduce an untrained audience to

new technology is out of the scope of this work, but I do feel the topic is particularly

salient in EMA, as the resulting models will likely get deployed in production. I also

contend that visual tools, like those supported by our workflow, are preferable to

non-visual tools in that the lay user can get a sense of the behavior of models and the

training data visually. It could be that additional safeguards should be worked into

the workflow to offer a sort of spell-check of the models, similar to how Kindlmann

and Scheidegger recommend that visualizations are run through a suite of sanity

checks before they are deployed [KS14].

The same participant also noted that streamlining can also limit the ability

of the user if they are skilled: “it doesn’t provide sufficient control or introspection...

I wanted to add features, customize model structure, etc., but I felt prisoner to a

fixed menu of options, as if I was just a spectator”. While some of this can be

ameliorated by building a system more angled at the expert user and including
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more customization options, ultimately the desired capabilities of a system by an

expert user may be beyond the ceiling of the workflow I have presented.

3.4 Usage Scenarios

In this section, I offer two examples of how the system might be used for exploratory

model analysis. Through these two scenarios I explain the role of the user during

each step of the workflow. The first scenario involves the exploration of a sociological

dataset of children’s perceptions of popularity and the importance of various aspects

of their lives. It is used to build predictive models which can then be incorporated

into an e-learning tool.The second scenario requires building predictive models of

automobile performance for use in prototyping and cost planning.

3.4.1 Analyzing the Popular Kids Dataset

The Popular Kids5 dataset consists of 478 questionnaires of students in grades 4,

5, and 6 about how they perceive importance of various aspects of school in the

popularity of their peers. The original study found that among boy respondents,

athletic prowess is perceived as most important for popularity, while among girl

respondents, appearance is perceived as most important for popularity [CD92].

John works for a large public school district that is trying to determine what

data to collect for students on an e-learning platform. Project stakeholders believe

that they have some ability to gather data from students in order to personalize

their learning plan, but that gathering too much data could lead to disengagement

from students. Therefore, John must find what sorts of predictive models can be

effective on data that is easy to gather.

John downloads the Popular Kids dataset and loads it into the application.

The system shows him linked histograms of the various features of the dataset, as

well as a searchable table. He explores the data (Step 1 in EMA workflow),

noting that prediction of a student’s belief in the importance of grades would be

5http://tunedit.org/repo/DASL
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a valuable prediction for the e-learning platform. He scans the list of generated

problems (Step 2), selecting a regression problem predicting the belief in grades.

He refines the problem (Step 3, removing variables in the training set of which

school the student was from, since that data would not be relevant in his deployment

scenario. He then sends this problem to the autoML backend, which returns a set

of models (Step 4). The system returns to him a set of regression models (Step

5), displayed as bar charts showing residuals on held out data (see Figure 3.5. He

notes that none of the regression models have particularly good performance, and

in particular, by using cross linking between the regression models and the raw data

visualizations, he notes that the resulting models have much more error on girls

than on boys.

At this point, John determines that the dataset is not particularly predictive

of belief in grades, and decides to search for another predictive modeling problem. He

returns to Step 3 and scans the set of possible problems. He notes that the dataset

contains a categorical variable representing the student’s goals, with each student

marking either Sports, Popular, or Grades as their goal. He chooses a classification

problem, predicting student goal, and removes the same variables as before. He

submits this new problem and the backend returns a set of models (Step 4). The

resulting classification models are visualized with a colored confusion matrix, seen

in figure 3.4. John compares the different confusion matrices (Step 5), and notes

that even though model 2 is the best performing model, it performs poorly on two

out of the three classes. Instead, he chooses model 3, which performs farily well on

all three classes (Step 6). He exports the model (Step 7), and is able to use it on

data gathered by the e-learning platform.

3.4.2 Modeling Automobile Fuel Efficiency

Erica is a data scientist at an automobile company and she would like to develop

predictive models that might anticipate the performance or behavior of a car based

on potential configurations of independent variables. In particular, she wants to be

able to predict how various designs and prototypes of vehicles might affect properties
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of the car that affect its sales and cost. She hopes to discover a model that can be

used to assess new designs and prototypes of vehicles, before they are built.

Erica has access to a dataset containing information about 398 cars (available

from OpenML [VvRBT13]), and she would like to build a set of predictive models

using different sets of prediction features to determine which features may be most

effective at predicting fuel efficiency. She begins by loading the Data Source and

explores the relationship between attributes in the histogram view (Step 1), shown

in the top histogram visualization in Figure 3.3(b). By hovering over the bars

corresponding to mpg, she determines that the number of cylinders and the class

may be good predictors. She then explores the system generated set of problem

specifications (Step 2). She looked on all the generated problem specifications with

“class” as predicting feature. She decides on predicting miles per gallon, and selects

a regression task. She selects the provided default values for the rest of the problem

specification (Step 3).

The ML backend trains on the given dataset and generates six models (Step

4). Erica starts to explore the generated regression models, visualized through

residual bar charts (Step 5). The model visualization in this case gives Erica a

sense of how the different models apportion residuals by displaying a bar chart of

residuals by instance, sorted by the magnitude of residual (see Fig. 3.5).

Erica notices that the two best models both have similar scores for mean

squared error. She views the residual plots for the two best models, and notes that,

while the mean squared error of model 4 is lowest, model 5 apportions residuals

more evenly among its instances (see Fig. 3.5). Based on her requirements, it is more

important to have a model that gives consistently close predictions, rather than a

model that performs well for some examples and poorly for others. Therefore, she

selects the model 5 (Step 6) to be exported by the system (Step 7). By following

the proposed EMA workflow, Erica was able to get a better sense of her data, to

define a problem, to generate a set of models, and to select the model that she

believed would perform best for her task.
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3.5 Conclusion

In this chapter, I define the process of exploratory model analysis (EMA), and con-

tribute a visual analytics workflow that supports EMA. I define EMA as the process

of discovering and selecting relevant models that can be used to make predictions on

a data source. In contrast to many visual analytics tools in the literature, a tool sup-

porting EMA must support problem exploration, problem specification, and model

selection in sequence. Our workflow was derived from feedback from a pilot study

where participants discovered models on both classification and regression tasks.

To validate our workflow, I built a prototype system and ran user studies

where participants were tasked with exploring models on different datasets. Partic-

ipants found that the steps of the workflow were clear and supported their ability to

discover and export complex models on their dataset. Participants also noted dis-

tinct manners in which how visual analytics would be of value in implementations of

the workflow. Subject matter experts were able to use our system to discover mod-

els that performed better on held out data than models chosen by an automated

machine learning algorithm. I also present two use cases across two disparate mod-

eling scenarios to demonstrate the steps of the workflow. By presenting a workflow

and validating its efficacy, this work lays the groundwork for visual analytics for

exploratory model analysis through visual analytics.

In three user studies run by NIST, users were able to explore the data and

model spaces and discover models to solve their applied machine learning problems.

In particular, users of our system were able to select models that performed better

than those models that were selected by automated machine learning algorithms.

Snowcat enabled them to do that by facilitating visual exploration of the training

data and the strengths and weaknesses of potential models (V1).
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Figure 3.4: A set of confusion matrices showing the different classification models
predicting Goal of students in the Popular Kids dataset [CD92]. The user is able
to see visually that, while the middle model has the highest overall accuracy, it
performs much better on students who have high grades as their goal. Instead, the
user chooses the bottom model, because it performs more equally on all classes.
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Figure 3.5: Regression plots of the two best models returned by a machine learning
backend.
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Chapter 4

Monitoring Training of

Recurrent Neural Networks

In the previous chapter, I presented evidence that a human in the loop can make use

of visualizations of training data and model predictions to choose a better model

than a machine alone. In this chapter, I address a different pitfall in learning

algorithms. As outlined in the introduction, even if an automated learning algorithm

is able to find an optimal model, it may not be aware of all of the qualitative

properties that are important for the model builder. In this chapter, I present a

visual analytics tool that allows a user to monitor a recurrent neural network during

training to assess whether it has learned enough context. Temporal context is a

crucial quality of language models, but it may not be encapsulated in the objective

function of the recurrent neural network. In addition, these types of models are

notorious for their lengthy training times and unusual behavior. The tool described

here helps the user make decisions earlier in training about whether to stop or

restart the process based on the recurrent neural network’s ability to learn temporal

dependencies during training.

Artifical Neural Networks (ANNs) have made revolutionary improvements

in classification in many domains, with particular attention given to their ability

to classify images using convolutional filters [KSH12]. A commonly-cited issue with

60



all ANNs is that they act as a black box, with large numbers of hidden layers

each individually learning their own weights resulting in a massive parameter space.

Problems of interpretability are compounded by non-linear transformations which

obfuscate interactions between each layer. Visualizations of activations within con-

volutional neural networks have seen some success in illuminating the inner work-

ings of networks to both help understanding and to assist in hyperparameter set-

tings [YCN+15]. However, such activation visualizations are specific to the domain

of image processing, and primarily offer insight into how a network is functioning

after training. In this chapter, I present RNNbow, a tool for providing insight

into the training of Recurrent Neural Networks (RNNs). RNNbow visualizes val-

ues calculated during training in order to show the user if their network is learning

long-term time dependencies over sequences, a necessary feature in most sequential

models. It can be used to uncover problems with poorly parameterized networks

early in training. It helps a user know if a model has been trained or if it needs to

be scrapped and reparameterized.

A key insight that differentiates this work from other visualizations for deep

learning is that it visualizes the gradients, not the activations. Activations are the

responses of the network during inference - when fed an input, what neurons are

firing? While this is instructive in comprehending how the network makes decisions,

it offers little insight into how the network learns. Learning in ANNs is typically

accomplished via gradient descent, a method which minimizes loss over a training

set by iteratively updating parameters in the direction dictated by the gradient of

that loss. Thus, to analyze how the network is learning (or if it is learning at all),

we must inspect the gradients.

RNNs are a particular class of ANNs that map input sequences to output

sequences. As with all ANNs, their function depends on what they are fed in as

inputs and what they are fed as desired outputs. They can learn to label each item

in a sequence if their training data includes labels; a good example of this is training

an RNN to do part-of-speech tagging. Alternatively, RNNs can be used to generate

sequences that look like the training data. This is accomplished in a technique first
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Figure 4.1: RNNbow helps the user see the flow of gradients due to an individual
cell’s loss during training of a Recurrent Neural Network. Here, we see highlighted
in blue the gradient resulting from loss due to predicting the character “u” when
the true character was “-”.

proposed by Elman [Elm90] in which, for a given training set s1 . . . sn the input

sequence is set to s1 . . . sn−1 and the output sequence is set to s2 . . . sn. In this way,

the RNN learns to predict the succeeding element of a sequence. RNNs are behind

some of Deep Learning’s most astonishing results, including language translation,

generating image captions, and predicting medical outcomes.

RNNs have been called both “unreasonably effective” [Kar15] and “difficult

to train” [PMB13]. One of the major issues with training RNNs is ensuring that the

gradient descent updates propagate far enough back that long-term dependencies

can be learned. Consider an RNN that tried to produce the following sentence.

The   man   bought    a    toy   for   his   dog.

i-1    i     i+1   i+2  i+3  i+4  i+5   i+6

In order for the RNN to be able to know the gender of the pronoun his, it

must remember the gendered noun man 5 time steps earlier. Since RNNs learn

via gradient descent, the only way to learn time dependencies of that distance is to

have the gradient due to the loss incurred by an errant prediction propagate back

to update the parameters that controlled how much the model learned at an earlier

step. In other words, if the word his at t = i+ 5 is a function of the word man at

t = i, then the gradient at t = i with respect to the loss at t = i+ 5 must be greater

than 0.

If an RNN is parameterized poorly, it may fall victim to the well-studied

vanishing gradient problem [PMB13], in which gradient only flows a few cells back,
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at which point the network may be no more capable than using frequency counts

over the training set. To try to address this problem, the user must not only select

numerical parameters like the size of the hidden layer or the number of layers, but

also must choose between different architectures (stacks or grids) and different RNN

cell types such as Long Short-Term Memory cells (LSTMs) or Gated Recurrent

Units (GRUs). The theoretical distinctions involved in making these choices can

be mystifying to many users of RNNs, and it can be confusing to try to diagnose

learning issues resulting from poor RNN design. Tools are needed to reveal endemic

issues in gradient flow in RNNs so that the user has early evidence of whether their

network architecture is able to learn or not.

RNNbow is a tool to visualize the gradient flow during training of an RNN. It

provides an overview of the magnitude of the gradient updates thorughout training,

showing the user how quickly a model is learning, and how the regime of parameter

updates changes over the course of training. It also allows users to drill down into a

particular batch and view the individual influence of each of the RNN’s predictions

on on parameter updates in the hidden layer. By breaking down the gradient update

at each cell by each component’s origin, it makes the vanishing gradient apparent.

It helps users assess their parameterization of their network during training. It also

provides an illustration of the change in gradient behavior as a network trains. In

the case of the earlier example, RNNbow can help the user detect if the loss incurred

during the update of the word him is successfully propagated 5 steps back to the

word man. At the time of writing, it is the only neural network visualization that

visualizes gradient flow in RNNs that the author is aware of.

Further, because RNNbow visualizes the gradient and not the input space,

the use of the tool is agnostic to the domain of the problem. In contrast to many

of the prevalent ANN visualizations that focus on convolutional neural networks

that operate on images [LSL+17, YCN+15], RNNbow could be used to visualize the

gradient of any RNN. In this chapter I use a character-level RNN as a demonstration,

but RNNbow could be applied to show learning of other sequential data, including

video frames and words.
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For a use case, I repeat a well-known RNN experiment [KJL15] to learn and

generate statements in the C programming language via a character-level RNN. I

present some insights that can be gleaned via RNNbow. I explain how traditional

implementations of backpropagation can be modified to collect the itemized gra-

dients visualized by RNNbow, and discuss complexity implications. I discuss the

advantages of visualizing gradient over activation, discuss the role of visual analyt-

ics in deep learning, and conclude by considering future work in using RNNbow to

compare different architectures.

yi

xi

hihi-1

tanh

U

W

V

Figure 4.2: A simple one-cell recurrent neural network, seen as a cyclic computation
graph. Trapezoids are linear transformations by a weight matrix. Rectangles are
element-wise scalar functions. The RNN produces an output yi for every input xi,
passing on the calculated hidden state hi back to itself to use for the next input.
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h0
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y3

x3

h2

tanh
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Figure 4.3: To make inference over a sequence of inputs, the RNN from Fig 4.2 is
unrolled once for each element in the input sequence. This RNN is unrolled three
times to make three cells. It takes three inputs, and produces three outputs. The
weight matrices U , W , and V are shared in each cell.
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4.1 Recurrent Neural Networks

The goal of an RNN is to produce output given sequence input. Their advantage over

other sequential learners such as Markov chains or Maximum Entropy Classifiers is

that they are able to learn long-term dependencies via nonlinear dynamics in their

hidden layer. The basic RNN architecture can be viewed as a graph with cycles, as

seen in Figure 4.2. At any given point in inference, the input xi and the previous

hidden state hi−1 are used to calculate the new hidden state hi, which is then used

to calculate the emission yi. Mathematically, this can be described as:

hi = tanh (Whi−1 + Uxi) (4.1)

yi = σ(V hi) (4.2)

Here, W , U , and V are weight matrices, and σ is the sigmoid function σ(x) =

1
1−e−x . Both tanh and σ are common activation functions in the deep learning

literature. Intuitively, the weight matrices perform a linear transformation on the

data, and then the activation functions squash the values back to an interpretable,

normalized range, with tanh bounded by (−1, 1), and σ bounded by (0, 1). In

addition, these activation functions add a nonlinearity into computation so that the

RNN can fit more than polynomial functions.

During training, the training data set is partitioned into regular batches. An

RNN trains on one batch at a time, in sequential order, by unrolling for a number of

steps equal to the size of the batch. A batch size of 3 is seen in Figure 4.3; however, a

typical batch size might range from a dozen elements to around a hundred. Within

a batch, the RNN steps through input in order, taking in an input, calculating

a hidden state, emitting an output, and then passing on the hidden state to be

used for the next item in the sequence. The inputs are any data that can be

sequenced (characters, words, frames, etc.), and the outputs can be classifications

of or regression on those inputs, or distributions of potential classifications over the
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output range. The outputs are compared to the true labels, and a loss is calculated.

The objective of training is to minimize the loss by choosing the optimal weight

matrices W , U , and V . After total loss has been calculated for an entire batch, the

gradient of the loss with respect to these weight matrices is calculated and they are

then updated via gradient descent. These gradients are typically calculated using

backpropagation, an efficient algorithm for calculating gradients in computational

graphs. The newly updated weight matrices are used for the next batch. The batch

size, the size of the hidden layer, and certain constants used in the updating of the

weight matrices are all hyperparameters set by the user.

For example, in the use case described in section 4.3, I build an RNN to

generate code for the C programming language. Before training, W , U , and V are

initialized randomly. If we used our RNN with these randomly-initialized weight ma-

trices to generate text, it would be the same as sampling from a uniform distribution

over all characters, and thus it would not look like code. By feeding our RNN input

data that looks like valid code, we gradually update our weight matrices so that our

RNN generates sequences that better match not only the distribution of characters

in the training set but the transitions between characters as well. Examples of code

generated by this RNN before and after training can be seen in Figure 4.4. For

more examples of character level RNNs, including much more in-depth analysis of

the generation of C code, see [KJL15].

Batch 0: 0cu |nv"M$R/m^u tt+^CeU@x>Uh

Batch 10000: s ged->bat ag_Me_sertaket())

Figure 4.4: Text generated by a character level RNN as used in our use case. The
first line was generated before any training, and seems like a random sampling of
characters. The second line was generated after training on 250000 characters of
the Linux Kernel, and seems to have captured some understanding of the syntactic
rules of the C programming language, such as function calls, underscore separators
in function names, and pointer accessing.

Our full training dataset is the Linux kernel, which I split into batches of 25

characters. This also corresponds to unrolling our RNN 25 steps. Referring to the

equations defined in (4.1) and (4.2), the character input xi could be encoded densely
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using a mapping such as ASCII, or it could use one-hot encoding. I use a hidden

layer of 100 nodes, meaning that the weight matrix U transforms our input xi into

a 100-dimensional vector representation of the original input character. The hidden

state vector is also 100 dimensions. Whi−1 and Uxi are added together and then

squashed through the tanh activation function. That result is then multiplied by the

weight matrix V , which projects back into the character-space encoding, providing

a multinomial distribution over all possible characters.

To train on a given batch, the RNN starts with the first character as input,

calculates a hidden state, and outputs a multinomial distribution for what it thinks

the next character could be. In RNNbow, I show the most-likely character from

that multinomial distribution, max(yi), as shown in area 2 of Figure 4.5. The true

label for the first character in the batch is the second character in the batch, since

in this experiment, I want the RNN to predict succeeding characters based on the

current character and its context. I use a softmax loss, which generates high loss if

our RNN suggests there is a low probability of the true label and a high probability

of other labels. That loss is then used to calculate the gradient update for the weight

matrices. In RNNbow, I only visualize the gradients of W , since W is what controls

the memory of the RNN.

4.2 RNNbow

RNNbow is a web application that visualizes the gradients used to update param-

eters during training of a recurrent neural network. In this section, I describe the

interface, then I review how the gradient data is harvested during training via back-

propagation through time (BPTT) [Hoc98].

4.2.1 Interface

The user interface of RNNbow is a coordinated multiple view implemented in d3.js

that provides both an overview of the data as well as details of particular elements of

the training set. The interface can be seen in Figure 4.5. It takes in data on gradients
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Figure 4.5: The user interface to RNNbow. In (1), the user is shown a bar chart
where each bar represents the maximum gradient per batch. By mousing over
different batches, the user can drill down to view gradient data from each batch
in the training set. The pink bar seen 3/4 of the way through (1) indicates the
currently selected batch, and some information for that batch is seen printed above
(1). In (2), the top row of characters holds the true labels from the training set,
and the bottom row holds the prediction from the RNN at training time. The
prediction is colored green if it is correct, and red if it is incorrect. (3) shows
the magnitude of the gradients being used to update the weights at each point in
time. Each bar is decomposed into the different sources of the loss that created that
gradient. On mousing over a particular gradient, we see the gradient due to a single
loss highlighted in blue, and projected down to (4) for easy inspection. Different
batches can be previewed in (2), (3), and (4) by hovering over their respective bars
in (1), and selected by clicking on those bars.

recorded during a pass over a training set. The specific data-visual mappings and

how such data is generated during training of an RNN model are both described in

section 4.2.2. RNNbow provides both an overview of gradients across all batches

and the ability to drill down and visualize the gradients from a single batch at a

time, so that the gradients at individual locations in the training set can be seen

clearly. Descriptions of the interface below will make repeated use of the numeric

labels from Figure 4.5.
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4.2.1.1 Area 1: Overview of Max Gradient of All Batches

Area 1 of the interface is a bar chart overview of the maximum gradient within each

batch. Our data comprised of 300 batches of gradient data during training. Each

bar in area 1 represents the maximum gradient across all training iterations within

that batch. Because RNNbow visualizes the maximum gradient in each batch as

the height of a bar in a bar chart, the user is able to easily to navigate to individual

instances of their training set where the most learning is happening. While visual-

izing the mean would also be valid in that it would show which batches were the

most informative, visualizing the max instead shows which individual elements of

the training set are the most informative, which I feel is a more interpretable value

to drill down to.

The user is able to drill down into a particular batch by hovering over a

particular bar, resulting in information about that batch being visualized in areas 2,

3, and 4. To fix that batch as the selected batch, the user may click on a bar. The

currently selected batch is signified as a pink bar in area 4. Some basic information

about the batch being visualized is displayed in text above area 1, including the

batch number, which training cells it corresponded to, and the maximum gradient

in that batch.

4.2.1.2 Area 2: Prediction and True Labels of a Single Batch

Area 2 provides details on demand for the batch selected in are 1. In the top row

of characters in area 2, we can see the ground truth labels from the training set

per element in the batch. Immediately underneath those labels, we see our RNN’s

prediction for the label of that element at the time this batch was passed through

during training. These predictions are colored according to whether they are correct

(green) or incorrect (red). In this figure, the training set batch begins with the five

characters “args; ”, and our RNN predicts the five characters “etn ”. Showing

the true and predicted labels helps ground the user in their data.
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4.2.1.3 Area 3: Per Batch Gradients

Underneath each label, in area 3, gradients at each time step of the selected batch of

training data are visualized as a stacked bar chart. The height of each bar represents

the magnitude of the gradient used to update the weights of the RNN at that step in

time, relative to the gradients within that specific batch. The bars are partitioned

according to how far in the future that portion of the gradient resulted from. The

lowest, darkest portion of the bar is the gradient due to the loss of the current point

in time (due to the loss of the label immediately above the bar). Stepping up in

the stacked bar, each new partition is gradient due to the loss accrued due to the

succeeding label. In RNNbow, each vertical bar can show the gradient contribution

from up to 5 time steps in the future. The number of steps was chosen empirically

based on this use case; for other datasets, a larger horizon may be necessary. For

more discussion, see section 4.2.2.3.

Blue bars highlight the gradient flow from the loss on a single instance in the

batch. They are described in greater detail below.

4.2.1.4 Area 4: Gradients Due to Individual Prediction

While seeing the breakdown of the sum of the gradient at each step may be informa-

tive, it is also interesting to see how gradient flows backwards from a particular time

step - this would show how the network was learning long-term dependencies. By

hovering over any portion of a bar in area 3, we highlight all portions in neighboring

bars due to the same loss. In addition, the particular prediction and label that are

responsible for that loss are highlighted with a darker gray background, as seen in

the gray box behind the two “t” characters in Figure 4.5. For the sake of analysis,

these portions are projected down into area 4 to highlight the rate at which the

gradient decays.

As an example, in Figure 4.5, the cursor is hovering over the bottom com-

ponent of the gradient bar below the true label ‘t‘. In area 4, we can see that the

gradient due to this decision propagated back 5 time steps, albeit diminishing in
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magnitude. Each blue bar represents the amount the parameters are being updated

at that point in time due to the prediction made at ‘t‘. The magnitude of these bars

is a proxy for how large the influence is of a previously predicted character, such as

the white space character instead of an ‘s‘ at the beginning of ‘struct‘, had on the

prediction of the character ‘t‘ at the end of ‘struct‘. The faster this gradient decays,

the shorter the time dependency is that the model is learning. I call this projected

bar chart the gradient horizon, as it aims to show when the gradient contribution

vanishes as it passes back. As the user sweeps the mouse up and down and across

bars, area 4 changes which gradient horizon it displays, allowing the user to quickly

navigate the decomposition of gradients.

4.2.2 Generating Gradient Data

Given a loss function, backpropagation passes that loss back to any parameters

involved in the loss’s calculation, via the chain rule. In a Convolutional Neural

Network, where one prediction is made, there is generally a single loss calculation,

which is then passed along via gradients. In an RNN, there are multiple losses; loss

is calculated at each output yi. Calculating the gradient of W is a difficult task

since each hidden state and each output are compounded functions of W .

To account for the multiple losses, RNNs use a special form of an algorithm

called backpropagation through time (BPTT) [Hoc98]. To use BPTT, RNNs are un-

rolled - that is, each cycle in the computation graph is represented as an additional

copy of the RNN, to create a directed acyclic computation graph that backpropa-

gation can then be used on, as seen in Figure 4.3.

Backpropagation is designed to be as computationally fast as possible, mak-

ing extensive use of dynamic programming to memoize intermediate calculations so

that the gradient can be calculated in a single pass backwards through time. How-

ever, fully utilizing dynamic programming will cause us to lose track of some of the

intra-sequence effects that RNNbow aims to illuminate. Thus, I remove one level of

dynamic programming, trading off increased computational complexity for the abil-

ity to record itemized gradients. To motivate this, in the following section I fully
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derive an expression for the gradient, pointing out what the mapping is between

RNNbow and the terms in that expression. I also show how our implementation is

equivalent to backpropagation.

4.2.2.1 Derivation of Itemized Gradients

We are concerned with ∂L
∂W , the rate at which the loss (L) changes with respect to

the weights of the hidden layer (W ). In training, I use that quantity to update W

via gradient descent. Because we are interested in the gradient contributions from

each time step, I decompose the loss into loss contributed from the prediction made

at each time step. Here, Lt is defined as the loss due to predicting yt, and n is the

size of the batch.

L =

n∑
t=1

Lt (4.3)

∂L

∂W
=

n∑
t=1

∂Lt
∂W

(4.4)

For a given time step t = i, we have the following decomposition, via the

chain rule.

∂Li
∂W

=
∂Li
∂yi
· ∂yi
∂W

=
∂Li
∂yi
· ∂yi
∂hi
· ∂hi
∂W

(4.5)

We can further decompose the rightmost term, ∂hi
∂W , but we must be careful:

hi is a function of W , but it is also a function of hi−1 which is in turn a function of

W , so we must use the product rule.

∂hi
∂W

= tanh′(Uxi +Whi−1)

[
hi−1 +W

∂hi−1
∂W

]
(4.6)
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The leftmost term is the derivative of tanh(x), evaluated at Uxi + Whi−1.

Notice that we still must further expand the rightmost term, just like we had to

with ∂hi
∂W . In the following derivations, the term tanh′(Uxi + Whi−1) is truncated

to tanh′i for the sake of readability.

∂hi
∂W

= tanh′i

[
hi−1 +W tanh′i−1

[
hi−2 +W

∂hi−2
∂W

]]
(4.7)

We would then have to expand ∂hi−2

∂W , and ∂hi−3

∂W , and on until we end up with

the term ∂h1
∂W which does not expand since h0, our initialized hidden state, does not

depend on W - it is a hyperparameter set by the user. In this way, the loss due

to our prediction at t = i ends up propagating all the way back through the input

sequence to t = 1.

∂hi
∂W

= tanh′i

[
hi−1 +W tanh′i−1

[
hi−2 + . . .+W

∂h1
∂W

]]
(4.8)

If we were to expand out all of the products in (4.8), we would end up with

summands that were only dependent on values available in ordered subsets of the

sequence.

∂hi
∂W

= tanh′i hi−1 + tanh′iW tanh′i−1 hi−2 + . . . (4.9)

Note that calculating the first summand only requires knowing hi−1 and the

additional arguments to tanh′i, U , W , and xi. Then, we can memoize the value

of tanh′i, and when calculating the next summand, we only need that memoized

value and U , W , hi−2, and xi−1. Let Mj be the i − jth summand of (4.9), so

Mi = tanh′i hi−1, Mi−1 = tanh′iW tanh′i−1 hi−2. Note that calculating Mj depends

only on the values U , W , xj , hj−1, hj , and Mj+1.
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∂hi
∂W

= Mi +Mi−1 + . . .+M1 (4.10)

Mj =
Mj+1

hj
W tanh′j hj−1 ; 0 < j < i (4.11)

Mi = tanh′i hi−1 (4.12)

Then we can rewrite (4.5) in a way that clarifies our implementation of its

calculation.

∂Li
∂W

=

i∑
j=1

∂Li
∂yi
· ∂yi
∂hi
·Mj (4.13)

In order to calculate the gradient for the entire batch, we would need to sum

this over each time step, so we substitute (4.13) into (4.4).

∂L

∂W
=

n∑
t=1

t∑
j=1

∂Lt
∂yt
· ∂yt
∂ht
·Mj (4.14)

In order to use RNNbow, I record the summand of (4.14) for each value of

(t, j). I call these summands the itemized gradients, as they are itemized by the

time step that was the source of their loss.

To calculate this in O(n2), {Mj} can be implemented as a one-dimensional

dynamic programming table that is filled in from right to left. Then each can be

calculated in a single backward pass of the batch, from j = t down to j = 1. As an

example, suppose that we were training a character-level RNN, and had a batch to

train on that was the six characters g u i t a r, but our RNN instead predicted

the six characters b a n a n a. To calculate our gradient, we start at the last

character, t = 6, and see that we predicted a instead of r, and so we incorporate

some loss. We record the gradient due to that prediction at t = 6, and then pass

back that loss via M6 to t = 5, · · · , t = 1. Once we have calculated all itemized

74



gradients due to predicting a instead of r at t = 6, we jump to t = 5, calculate the

loss due to predicting n instead of a, and pass a different set of Mj back. This is

based on an implementation of BPTT from [Bri15].

The full area of the batch view seen in area 3 of Figure 4.5 represents the full

value of ∂L
∂W . The full area of the detailed gradient horizon seen in area 4 of Figure 4.5

represents the full value of ∂Li
∂W described in (4.13), and each bar within area 3

corresponds to an individual summand. A vanishing gradient would correspond to

the summands decreasing as j decreases, which can be seen in Figure 4.8.

Traditional backpropagation only takes O(n), but it doesn’t expose the item-

ized gradients that we need to record for RNNbow. A further exploration of the

relationship between our calculation and traditional backpropagation is given below.

4.2.2.2 Itemized Gradients vs. Backpropagation

The calculation of (4.14) takes O(n2), where n is the size of the batch. It is possible

to utilize dynamic programming further to speed it up to O(n); this is used in most

implementations of backpropagation. First, we expand both sums in (4.14).

∂L

∂W
=
∂Ln
∂yn

· ∂yn
∂hn

· [Mn +Mn−1 + · · ·+M1]

+
∂Ln−1
∂yn−1

· ∂yn−1
∂hn−1

· [Mn−1 + · · ·+M1]

· · ·

+
∂L1

∂y1
· ∂y1
∂h1
·M1 (4.15)

Next, we distribute, group the terms by Mj , and factor.
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∂L

∂W
=Mn

(
∂Ln
∂yn

· ∂yn
∂hn

)
+Mn−1

(
∂Ln
∂yn

· ∂yn
∂hn

+
∂Ln−1
∂yn−1

· ∂yn−1
∂hn−1

)
+ · · ·

+M1

(
∂Ln
∂yn

· ∂yn
∂hn

+ . . .+
∂L1

∂y1
· ∂y1
∂h1

)
(4.16)

Let Nj =
(
∂Ln
∂yn
· ∂yn∂hn

+ . . .+
∂Lj

∂yj
· ∂yj∂hj

)
. Then {Nj} can be implemented with

a dynamic programming table as with {Mj}, and we can calculate the gradient in

a single pass.

∂L

∂W
=

n∑
i=1

MiNi (4.17)

Nj = Nj+1 +
∂Lj
∂yj
· ∂yj
∂hj

; 0 < j < i (4.18)

Ni =
∂Li
∂yi
· ∂yi
∂hi

(4.19)

In optimized versions of backpropagation through an RNN, I only make a

single pass backwards through time, passing back our accumulation of the gradients

Nj , and adding on the gradient of the current time step. For RNNbow, I can’t use

this method, however, because we lose track of the terms in the expanded product

of (4.16) when we make use of the dynamic programming table for {Nj}. Thus,

I need to use the O(n2) version described by (4.14), saving each summand as we

accumulate the sum. It is possible that, depending on the implementation library,

keeping track of the intermediate Mj and Nj , and then utilizing vector math, as

is commonly used in the python library Numpy, could allow us to use traditional

backpropagation.
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4.2.2.3 Computational Concerns vs. Estimation

In practice, it may be impractical and unadvised to calculate the itemized gradients

throughout all of training. To begin with, this algorithm generates an immense

amount of data, storing O(HNn) gradients in a single pass over the training set,

where H is the number of nodes in the hidden layer, N is the size of the training

set, and n is the batch size. In the use case, I used small batches and a small hidden

layer (n = 25, H = 100) compared to many networks, and if we had used the entire

training set, even using these small settings for n and H we would have created data

that was 2500 times the size of our training data.

The problem of data size can be ameliorated by only calculating the itemized

gradients periodically - in our use case, we only store the gradients every 100 batches,

reverting to the optimized version of backpropagation for the other 99% of batches.

Lastly, gradients are averaged between all nodes in the hidden layer, as our goal is

to see the general rate of training, rather than drilling down into individual hidden

nodes. Since this data is used for visualizations, visualizing data from all nodes

would lead to occlusion problems, and the general trends of gradient can be viewed

in the average.

It may also not be necessary to step all the way back through the batch

when calculating itemized gradients. Equation (4.10) shows that the gradient due

to a particular time step’s loss is decomposable into a sum of sequence. We can use

(4.11) to analyze the rate of decay of that sequence.

Mj

Mj+1
=
hj−1
hj

W tanh′j (4.20)

W is generally initialized close to 0, and regularization is used to keep it

having small magnitude during gradient descent. tanh′ has a range of (0, 1], and

hj−1

hj
should generally be close to one. Thus, the sequence {Mj} should decay as

j decrements. Then it would stand to reason that we might be able to choose a

value k such that we only have to step back k steps to be close enough to the real
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gradient.

Sk = Mi +Mi−1 + . . .+Mi−k (4.21)

Sk ≈
∂hi
∂W

(4.22)

In the use case, I empirically chose k = 5 based on manual inspection of

the data. However, it is highly likely that acceptable k should vary with RNN

architecture and cell choice. It might be possible to find a k such that ||Sk− ∂hi
∂W || < ε

globally across a validation set. Since k is loosely a measure of how far the gradient

horizon is, it would stand to reason that a more sophisticated architecture would

demand a larger k.

4.3 Use Case

To demonstrate the use of RNNbow, I trained a character-level RNN on the Linux

Kernel to try to get it to generate code that looks like the C programming language,

replicating an experiment done in Karpathy et al.’s seminal RNN work [KJL15]. I

used batches of 25 characters, and recorded gradients every 100 batches over the

first 50000 batches of the training data. I use a hidden layer of 100 nodes, but I

average the gradients across all nodes. In this section, I outline several insights that

can be found via RNNbow.

Figure 4.6: The gradients of a batch early in training. Note that the gradients are
mostly composed of darker shades of color. This signifies that the gradient updates
are primarily due to local loss, zero, one or two time steps away.
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Figure 4.7: The gradients of a batch later in training. Here, the gradients are much
more distributed across different shades, suggesting that longer-term dependencies
are being learned.

4.3.1 Overview of Gradients Over Time

Figure 4.5 shows the result of training an RNN using our approach. Looking at the

overview section, seen as area 1 in Figure 4.5, the first insight is that the magnitude

of the gradient starts very small, and then appears to plateau, albeit with a fair

amount of variance. This suggests that early in training, the weights update slowly

- there may be some burn-in required before the parameters are updating efficiently.

The overview also points the user to batches with maximal gradient. It makes it

easy for the user to view the elements of the training set that the RNN learns the

most from.

It can also be instructive to compare the batch visualizations (area 2 in

Figure 4.5) as they change from early in training to late in training. Figure 4.6

shows the gradients of a batch early in training, and Figure 4.7 shows the gradients

of a batch late in training. At a glance, the darker the batch visualization is,

the shorter the gradient horizon is; a larger portion of the update at each step

comes from local losses. In Figure 4.6, most of the bars in the visualized batch are

primarily composed of dark green bars. Compare that pattern to a batch later in

training in Figure 4.7, where the gradient is much lighter; this corresponds to longer

gradient horizons for training in this batch. Exploring the training patterns over

training reveals that this particular RNN seemed to lengthen its time dependencies

as training went on.
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Figure 4.8: The detailed view of the gradients due to a single character’s loss. Note
that it makes the vanishing gradient effect very apparent.

4.3.2 Vanishing Gradient

A well-known consequence of the activation functions used in RNNs, tanh and σ,

is that they result in a gradient that decreases as it is passed back in time. For

large swaths of the hyperparameter space, the gradient may decay incredibly fast,

restricting any long-term dependency learning [PMB13, Hoc98].

The primary function of the projection of gradients in the visualization, area

4 in Figure 4.5, is to illustrate the rate at which the gradient decays. By mousing

over a gradient bar, the user can see the rate at which that particular gradient due

to a particular character’s loss vanishes. This can be seen in Figure 4.8.

Figure 4.9: The maximal gradient in the training set. The RNN assumes a large
gradient when predicting the character a instead of the character (. This may be
due to a large loss being incurred by the model not learning the iterator grammar
of the C programming language.
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4.3.3 Batches With Maximal Gradient

The overview bar chart in area 1 of the interface shown in Figure 4.5 can be used to

cue the user towards parts of the training set that the RNN learns the most from.

For an example, I clicked on the rightmost bar of area 1 to change the focus of

RNNbow to that batch, since that bar had the greatest height and thus the greatest

maximal gradient. The stacked bar chart of the maximal gradient in that batch can

be seen in Figure 4.9. The maximal gradient is due to predicting the character a

instead of predicting the character (, in spite of the context of being in a for loop.

Note that it also assumes some gradient from incorrectly predicting the subsequent

characters as well. This suggests that our RNN has not learned the iterator grammar

of the C programming language. It also confirms that our RNN is learning from

reasonal mistakes rather than overfitting a non-generalizable error. As this maximal

gradient comes late in our training set and is on a legitimate mistake, it cues the

user that we have not trained enough and training must continue.

4.4 Discussion

4.4.1 Limitations

RNNbow may not be a good fit for industry-scale recurrent neural networks; such

users would be better served with custom visualizations and custom analytics within

their deep learning pipelines. RNNbow is most useful to the non-expert. The current

implementation does have some scaling issues, both in the interface as well as in

the implementation of backpropagation through time, described in section 4.2.2.

However, it is more likely that a non-expert would use smaller networks that are

executable on a personal computer; that is the scale I aim to currently support.

The design does have some visual layout issues with scale as well. This

interface doesn’t support more than a few hundred batches, although this should be

solvable with some aggregation and drilldown. In practice, RNNs may train over

hundreds of thousands of batches. A heuristic could be used to point the user to
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particularly interesting batches within the training data. Similarly, the stacked bar

chart might not scale to batch sizes of 50 or more. In the use case given in this

work, with a batch size of 25 and k = 5, the stacked bar chart was responsible

for visualizing 125 pieces of data. A sophisticated RNN might have a batch size

of 128 and would hopefully have a much larger memory; more iterations of design

are needed to come up with an appropriate visualization of so many gradients.

In addition, some form of aggregation would need to be defined for the predicted

labels (in this case, characters) in large batch sizes. Perhaps the largest hurdle

to supporting industry scale networks is the number of layers visualized. RNNbow

currently supports a single layer; there are popular CNNs with more than a hundred

layers, and RNNs are following suit [PGCB13]. It’s unclear how the stacked bar chart

would scale to even a dozen layers. It may be that a higher resolution visualization

of gradients between layers is needed.

Prior to the design of the visualization, basic experiments were run to es-

timate the gradient horizon throughout the first 50000 batches of training, and it

was found that it varied from 2 to 5 characters before the gradient dropped below

a certain ε > 0. Production-level RNNs, with sophisticated architectures, may need

gradient horizons of tens or even hundreds of time steps. The current algorithm

used may not be scalable to record the gradient that many steps back. This could

be addressed by taking the gradients much less frequently than every 100 batches.

4.4.2 Visualizing Gradients

One of the key insights of RNNbow is that it visualizes the gradient, as opposed to

the activation. Gradients are increasingly being accepted as a more salient repre-

sentation of the learning surfaces and thus a more informative value to study than

activation and loss [KL17]. Considering that the gradient is what dictates updates to

the model, i.e. what is learned, its visualization is revealing of the training process.

It is particularly salient in a visualization of RNNs, as the many-to-many relation-

ship between losses and time steps can be difficult to intuit about. It proved useful in

discovering endemic properties like vanishing gradients; there may be other endemic
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qualities in network training that cannot be noticed in visualizations of activations.

In this work, I focused on the gradient ∂Li
∂W , in part because this is a value

that is already traditionally calculated during backpropagation, as it represents the

quantity by which we update the tunable parameter W in the RNN. This in turn

led to calculating intermediate gradients including ∂Li
∂yi

and ∂hi
∂W . There are other

gradients, however, that could have been calculated during training. In particular,

∂hi
∂hj

could have revealed interesting interplay between nodes within the hidden layer

and how they kept track of memory. As we seek to crack open the black box of neu-

ral networks, it is important to remember that each gradient is a different tangent

surface to the manifold on which the full parameter space of the network lies. In this

work, I analyze a very specific tangent surface with the goal of understanding time

dependencies. In work on visualizing CNNs, it is very common to consider gradients

of the activations as they correspond to particular outcomes with a goal of deter-

mining what parts of the image are most sensitive to a network’s understanding of

a label. In order to better understand the cross effects between parameters in a

deep network, it may be necessary to explore several of these gradient surfaces, cou-

pled with a visual analytics system that guides the user towards logical conclusions,

as RNNbow does for the vanishing gradient. Each gradient surface may change

drastically over different architectures and settings of hyperparameters. Comparing

gradient surfaces generated by different networks may offer more insight into the

sensitivity of network behavior to each hyperparameter.

4.4.3 Role of Visual Analytics in Deep Learning

It is not unreasonable to ask: is there even a role for Visual Analytics in Deep

Learning? While it is clear that visualization has a role in helping a user build

models that they trust, there are extenuating circumstances that make it hard to

apply the same considerations to deep learning. A typical Support Vector Machine

or Decision Tree has only a handful of hyperparemeters that need to be set by the

user, and it learns only a dozen or so parameters during training. In contrast, the

famous AlexNet CNN from 2012 [KSH12], a relative dinosaur in deep learning years,
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fits 60 million parameters. Users must choose architectures, cell types, learning

rate, filter size, and a number of other hyperparameters. While this may sound like

it offers a good opportunity for building an analytics system that abstracts away

these decisions, in practice, it is impractical to infer these values. Generally, visual

analytics systems that collaboratively build a model with a user do so by engendering

an abstraction, or mental model, of the underlying parameters, and then enable the

user to manipulate those parameters with intuitive interactions. In many cases,

industry-size neural networks simply have too many underlying parameters, and

these parameters tend to interact with one another in unintuitive ways. Once a user

has trained enough to understand how those parameters work together, they likely

have gained the ability to program their own scripts using one of the many fully-

featured deep learning frameworks, at which point they may find a visual analytics

sytem superfluous.

Perhaps because most builders of deep learning models were already able to

write their own scripts, the most succesful visualizations related to deep learning

were not incorporated into visual analytics systems, but were rather used to try to

explain the inner workings of a deep learning model post-hoc, after it had been built,

in order to gain insight into some of the structures that empirically were working.

This led to static visualizations of cleverly calculated values, including gradients,

typically overlaid on the input domain to ground the network in the data on which

it had been trained. In their popularity, these visualizations suggested that it could

be possible to apply some interactivity into model building if the right data was

visualized.

The current usage of deep learning in the wild This landscape leads to very

different recommendations for designing tools depending on the audience of the

tool. Our tool is primarily targeted at nonexperts tuning simple one-layer RNNs,

possibly in an educational setting. For that reason, I favored simple, low-dimensional

visualizations, and used calculated values with a clear, unambiguous meaning. For

an expert, the design decisions are drastically different. The designer can make an

assumption that the user will be directly interacting with their model through a
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deep learning scripting framework and that this framework gives them the ability

to calculate their own values of interest. Then these works can focus more on

an overview of many different aspects of the network, almost like a monitoring

system. Good examples of support for industry-scale model builders can be found in

recent works by Google [WSW+18] and Facebook [KAKC18]. For a more thorough

treatment of the state of visual analytics in deep learning, I direct the reader to a

recent survey [HKPC18].

4.4.4 Future Work

The design space of RNNs is rich and constantly evolving, and much of the progress

has the goal of having a longer gradient horizon. As visualizing this gradient hori-

zon is the key feature of RNNbow, it should prove invaluable in comparing different

approaches. One direction of RNN research focuses on making more sophisticated

cells in which the calculation of the hidden state and outputs differs from the vanilla

RNN equations, seen in (4.1) and (4.2). I would like to adapt RNNbow to visualize

the gradient flow of these alternative cells. It should be illustrative in comparing

a vanilla RNN to a Long Short Term Memory (LSTM). LSTMs have two hidden

layers, one of which is supposed to hold short term memory, and one of which holds

long term memory. It would be interesting to see if this is supported in visual-

izations of the gradients of each hidden layer. Another type of cell called a Gated

Recurrent Unit (GRU) only has one hidden layer, but in practice accomplishes long-

term dependencies similarly to LSTMs. It isn’t particularly clear why this should

be. In both LSTMs and GRUs, the calculations of emissions require additional

computation with each type of cell having several gates that supposedly lengthen

the memory. Perhaps RNNbow would be able to be extended to reveal the gradient

flow within a cell, not just between cells.

Beyond different cell types, different arrangements of cells have also proved

helpful in practical RNNs. One type of cell architecture is a bidirectional RNN,

in which two recurrent neural networks are run in parallel for each batch, with one

running through the input sequence from left to right and the other in reverse. Their
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outputs are then combined through a learned linear combination. The bidirectional

RNN allows learning former and future context, and viewing the gradient flow in

both directions may aid in the understanding of its training. More advanced archi-

tectures results from adding layers of RNNs, either to match to multidimensional

sequences, or to use multiple layers to capture different levels of abstraction in the

input sequence as is typical in CNNs. These architectures are difficult to conceptu-

alize; visualizing the gradient may help. However, their spatial complexity proves

a challenge in the current layout of RNNbow; some cleverness will be necessary to

determine a layout for such architectures.

In this work, I didn’t consider the separate nodes in the hidden layer - I

just averaged the gradients together. This is in contrast to many of the works on

interpreting ANNs, in particular because the activation of a single node tends to

be a binary decision maker. Previous work suggests that individual nodes have

unique responsibilities; in the same experiment as used in this work, Karpathy et

al. [KJL15] found that a single node was responsible for remembering the state of

generated C code as being in a parenthesis or out of a parenthesis. However, there is

no scalable way to visualize all hidden nodes in RNNbow; some heuristic will need

to be developed to cue the user to interesting nodes, and some overview of node

performance other than the mean will need to be added.

4.5 Conclusion

I present RNNbow, a web-based visualization tool for analyzing gradient flow during

training of a Recurrent Neural Network. I demonstrate how it can be used to find

endemic properties in a network that are important to the user but not necessarily

encoded into the loss function used by the algorithm (V2). I show how it can

provide insights into the learning process, and can be a useful educational tool for

illuminating the vanishing gradient phenomenon. I review how to calculate the

itemized gradients necessary for loading data into RNNbow. I discuss potential uses

of the tool, especially the applications to other RNN architectures.
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Chapter 5

Controlling the Loss Function in

Neural Architecture Search

In the previous chapter, I described a system that helped a user monitor the qualita-

tive properties of a machine learning model during training. This has value because

these properties may not be guaranteed by high performance on the metrics op-

timized by the machine learning algorithm. In this chapter, I describe a similar

tool which helps a user discover and train a convolutional neural network for image

classification. Similar to recurrent neural networks, convolutional neural networks

are expensive to train. But beyond that, this tool also gives several levels of control

over the learning algorithm, implicitly making the loss function better match their

estimation of risk for the deployment of the model (V2). For example, users can

choose to find a model that has a small number of parameters or only uses certain

layers.

Deep neural networks have been applied very successfully in recent advances

in computer vision, natural language processing, machine translation and many

other domains. However, in order to obtain good performance, model developers

must configure many layers and parameters carefully. Issues with such manual con-

figuration have been raised as early as 1989, where Miller et al. [MTH89] suggested

automated neural architecture search should be useful in enabling a wider audience
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Figure 5.1: A screenshot of the REMAP system. In the Model Overview, section A,
a visual overview of the set of sampled models is shown. Darkness of circles encodes
performance of the models, and radius encodes the number of parameters. In the
Model Drawer, section B, users can save models during their exploration for com-
parison or to return to later. In section C, four tabs help the user explore the model
space and generate new models. The Generate Models tab, currently selected, allows
for users to create new models via ablations, variations, or handcrafted templates.

to use neural networks:

“Designing neural networks is hard for humans. Even small networks

can behave in ways that defy comprehension; large, multi-layer, nonlin-

ear networks can be downright mystifying.” [MTH89]

Thirty years later, the authors’ note is still a common refrain. While research

has continued in automated neural architecture search, much of the progress in

algorithms has focused on developing more performant models using prohibitively

expensive resources. For example, state of the art algorithms in reinforcement learn-

ing taking 1800 GPU days [ZVSL17] and evolutionary algorithms taking 3150 GPU

days [RAHL18] to discover their reported architectures. Those users that have ac-

cess to the type of hardware necessary to use these algorithms likely would either

have the expertise needed to manually construct their own network or would have

access to a machine learning expert that would be able to do it for them.

Likewise, a number of visual analytics tools have been released that make
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neural networks more interpretable and customizable [HKPC18]. However, these

tools presuppose that a sufficiently performant model architecture has been chosen

a priori without the aid of a visual analytics tool. The initial choice of neural

network architecture is still a significant barrier to access that limits the usability

of neural networks. Tools are needed to provide a human-driven search for neural

network architectures to provide a data scientist with an initial performant model.

Once this model has been found, existing visual analytics tools could be used to fine

tune it, if needed.

In this chapter, I present REMAP, a tool for human-in-the-loop neural ar-

chitecture search. Compared to the manual discovery of neural architectures (which

is tedious and time consuming), REMAP allows a model builder to discover a deep

learning model quickly via exploration and rapid experimentation. In contrast to

fully automated algorithms for architecture search (which are expensive and difficult

to control), REMAP uses a semi-automated approach where users have fine-grained

control over the types of models that are generated. This allows users to trade off

between the size of the model, the performance on individual classes, and the overall

performance of the resulting model.

Through a set of interviews with model builders, I establish a set of tasks used

in the manual discovery of neural network architectures. After developing an initial

version of REMAP, I held a validation study with the same experts and incorporated

their feedback into the tool. In REMAP, users first explore an overview of a set of

pre-trained small models to find interesting clusters of models. Then, users guide

the discovery of new models via two operations on existing models: ablations, in

which a new model is generated by removing a single layer of an existing model, and

variations, in which several new models are generated by random atomic changes of

an existing model, such as a reparameterization or the replacement of an existing

layer. Users can also manually construct or modify any architecture via a simple

drag-and-drop interface. By enabling global and local inspection of networks and

allowing for user-directed exploration of the model space, REMAP supports model

selection of neural network architectures for data scientists.
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The model space for neural networks poses unique challenges for our tool.

Whereas many of the parameter spaces explored in other types of models have

a set number of choices of parameters, the parameter space for neural networks is

potentially infinite - one can always choose to add more layers to a network. In order

to aid in the interpretation of the model space, I propose 2-D projections based on

two different distance metrics for embedding neural networks based on Lipton’s two

forms of model interpretability, transparency and post-hoc interpretability [Lip16].

The second significant hurdle for a visual model selection over neural net-

works is to find a visual encoding for neural networks that enabled comparison of

many networks while still conveying shape and computation of those networks. In

this chapter, I contribute a novel visual encoding, called Sequential Neural Architec-

ture Chips (SNACs), which are a space-efficient, adaptable encoding for feed-forward

neural networks. SNACs can be incorporated into both visual analytics systems and

static documents such as academic papers and industry white papers.

The workflow of this system largely follows the conceptual framework for

visual parameter space analysis from Sedlmair et. al. [SHB+14]. A starting set of

models is initially sampled from the space in a preprocessing stage, and projections

of the models are calculated. Models are then explored in three derived spaces: two

MDS projections corresponding to the two distance metrics as well as a third pro-

jection with interpretable axes. The system then uses the global-to-local strategy of

navigating the parameter space, moving from an overview of models to an inspection

of individual models in neighborhoods in the derived spaces. During exploration,

users can instruct the system to spawn additional models in the neighborhood of

already-sampled models, rendering more definition in their mental model of the

parameter space on the regions they are most interested in.

Overall, the contributions outlined in this chapter include:

• REMAP, a visual analytics system for semi-automated neural architecture

search that is more efficient than existing manual or fully-automated ap-

proaches
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• A set of visual encodings and embedding techniques for visualizing and com-

paring a large number of sequential neural network architectures

• A set of design goals derived from a design study with four model builders

• A use case applying REMAP to discover convolutional neural networks for

classification of sketches

5.1 Motivation

Neural networks are a class of machine learning models that are inspired by the

message passing mechanisms found between neurons in brains. A neural network

consists of an architecture and corresponding parameters1 chosen by the model

builder for each component of that architecture. The architecture defines the com-

putational graph mapping from input to output, e.g. how the input space, such as

an image, is transformed into the output space, such as a classification (the image

is a cat or a dog). In sequential neural networks, which have simple computation

graphs representable by linked lists, the nodes of the computations graphs are called

layers.

Choosing an architecture that performs well can be difficult [MTH89]. Small

changes in parameters chosen by model builders can result in large changes in perfor-

mance, and many configurations will result in models that quickly plateau without

gaining much predictive capacity through training. In addition, training neural net-

works is very slow relative to other machine learning methods. As a result, the

process of manually discovering a performant model can be frustrating and costly

in time and resources.

Automated algorithms for neural architecture search generate thousands of

architectures in order to find performant architectures [ZL16] and can require tens

of thousands of GPU hours of training [ZVSL17, RAHL18]. The best discovered

1Parameters chosen by the model builder are sometimes called hyperparameters to differentiate
from the parameters of a model that are learned during training. In this chapter, we call both of
these terms parameters, but refer to the latter as learned parameters for the sake of delineation.
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models might be too large for a model builder if they aim to deploy their model

on an edge device such as a tablet or an internet of things device. Ideally, a model

builder would be able to handcraft each generated model and monitor its training

to not waste time and resources discovering models that were not useful. However,

handcrafting each model can be time consuming and repetitive.

In our tool, we seek a middle ground. We initially sample a small set of ar-

chitectures, and then use visualizations to facilitate exploration of the model space.

Model builders can find regions of the space that produce models they are inter-

ested in, and then they can execute a local, constrained, automated search near

those models. As they get closer to finding an acceptable model, they can explicitly

handcraft models through a graphical interface. Rather than training thousands of

architectures, the model builder trains orders of magnitude less, and stops the ar-

chitecture search when they have found an acceptable model. Our semi-automated

approach lets the user search for neural architectures without the tedium of manu-

ally constructing each model and without the resources and time required by fully-

automated algorithms for neural architecture search.

5.2 Design Study

In order to develop a set of task requirements, I interviewed a set of model architects

about their practices in manually searching for neural network architectures. I also

asked the experts what visualizations might be helpful for non-experts in a human-

in-the-loop system for neural network architecture search.

Participants: To gather participants, I recruited individuals with expe-

rience in designing deep neural network architectures. Four experienced model

builders agreed to participate in the interview study. Three of the participants

are PhD students in machine learning, and the fourth participant has a Masters

degree in Computational Data Science and works in industry. They had previously

used neural networks for medical image classification, image segmentation, natural

language processing, and graph inference. One participant contributed to an open
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source automated neural architecture search library. All four participants were from

different universities or companies and had no role in this project. Participants were

compensated with a twenty dollar gift card.

Method: Interviews were held with each participant to establish a set of

tasks used to manually discover and tune neural networks. The interviews were

held one-on-one using an online conferencing software with an author of this work

and took one hour each. Audio was recorded and transcribed with the participants’

consents so that quotes could be taken.

Interviews were semi-structured, with each participant being asked the same

set of open-ended questions. They were first asked to describe their work with

neural networks, including what types of data they had worked with. They were

then asked about their typical workflow in choosing and fine tuning a model. Then,

the benefits of human-in-the-loop systems for neural network model selection were

discussed. Lastly, participants were prompted for what types of features might be

useful in a visual analytics system for selecting a neural network.

Findings: The findings from the interview study resulted in the following

set of design goals.

• Goal G1: Find Baseline Model: Three out of the four participants noted

that when they are building an architecture for a new dataset, they start

with a network that they know is performant. This network might be from

a previous work in the literature or it might be a network they’ve used for

a different dataset. This network typically provides a baseline, upon which

they then do fine tuning experiments: ”The first step is just use a structure

proposed in the paper. Second step I always do is to change hyperparameters.

For example, I add another layer or use different dropouts.” One participant

noted that they prioritize using a small model as a baseline because they are

more confident in the stability of small models, and it is easier to run fine

tuning experiments on small models because they train faster.

• Goal G2: Generate Ablations and Variations: Three participants noted
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that in order to drive their fine tuning, they typically do two types of exper-

iments on a performant network. First, they do ablation studies, a technical

term referring to a set of controlled experiments in which one independent

variable is turned off for each run of the experiment. Based on the results

of the ablation studies, they then generate variations of the architecture by

switching out or reparameterizing layers that were shown to be less useful by

the ablations. Two participants noted that these studies can be onerous to

run, since they need to write code for each version of the architecture they try.

• Goal G3: Explain/Understand Architectures: When asked about the

types of information to visualize for data scientists, two participants noted that

users might be able to glean a better understanding of how neural networks are

constructed by viewing the generated architectures. While it may be obvious

to the study participants that convolutional layers early in the network are

good at extracting features but less helpful in later layers, that understanding

comes from experience. By visually comparing models, non-experts might

come to similar conclusions. One participant pointed out that the human-in-

the-loop could interpret the resulting model more, helping ”two people, the

person developing the results, and the person buying the algorithm.”

• Goal G4: Human-supplied Constrained Search: Participants were asked

what role a human-in-the-loop would have in selecting a neural network ar-

chitecture, compared to a fully-automated model search. All four participants

noted that if the data is clean and correctly labeled, and there are sufficient

resources and time, that a human-in-the-loop would not improve upon an au-

tomated neural architecture search. But three participants noted that when

resources are limited, the human user can compensate by offering constraints to

an automated search, pointing an automated search to particular parts of the

model space that are more interesting to the user. One participant noted that

for fully-automated model search, ”some use reinforcement learning, [some]

use Bayesian optimization. The human can also be the controller.”
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From these findings, I distill the following tasks that our system must support

to enable data scientists to discover performant neural network architectures.

• Task T1: Quickly search for baseline architectures through an overview

of models. Users must be able to start from an effective baseline architec-

ture [G1]. Experts typically refer to the literature to find a starting archi-

tecture that has already been shown to work on a similar problem, such as

VGGNet [SZ14] or ResNet [HZRS16]. These models, however, have hundreds

of millions of parameters and cannot be easily and quickly experimented upon,

so some other manner for finding compact, easily trainable baseline models is

needed. Users should be able to find small, performant baseline models easily

via visual exploration.

• Task T2: Generate local, constrained searches in the neighborhood

of baseline models. Our tool needs to provide the ability to explore and

experiment on baseline models using ablations and variations [G2]. These

experiments should help the user in identifying superfluous layers in an archi-

tecture. The human user should be able to provide simple constraints to the

search for new architectures [G4].

• Task T3: Visually compare subsets of models, their hyperparame-

ters, and their performances to understand small, local differences

in architecture. The tool should support visual comparisons of models to

help the user understand what components make a successful neural network

architecture. This helps the user interpret the discovered neural network mod-

els [G3] while also informing the user’s strategies for generating variations and

exploring the model space [G4].

Beyond these three tasks, I also note that compared to many fully automated

neural architecture searches, we must be cognizant of limitations on resources. Much

of the neural network literature assumes access to prohibitively expensive hardware

and expects the user to wait hours or days for a model to train. In our tool, I focus
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instead on small models that are trainable on more typical hardware. While these

models may not be state of the art, they are accessible to a much wider audience.

5.3 REMAP: Rapid Exploration of Model Architectures

and Parameters

REMAP is a client-server application that enables users to interactively explore

and discover neural network architectures.2 A screenshot of the tool can be seen in

Figure 5.1. The interface features three components: a Model Overview represented

by a scatter plot (Fig. 5.1A), a Model Drawer for retaining a subset of interesting

models during analysis (Fig. 5.1B), and a data/model inspection panel (Fig. 5.1C).

All screenshots in this section use the CIFAR-10 dataset, a collection of

50,000 training images and 10,000 testing images each labeled as one of ten mu-

tually exclusive classes [KH09]. Model training including both preprocessing and

in-situ model generation was done using a Dell XPS 15 laptop with a 2.2ghz i7-8750

processor, 32 GB of RAM, and a NVIDIA GeForce GTX 1050 Ti GPU with 4GB

of VRAM.

5.3.1 General Workflow

The user workflow for REMAP is inspired by the common workflow identified in the

interview study and encompasses tasks T1, T2, and T3 as defined in section 5.2.

First, they find a baseline model by visually exploring a set of pre-trained models

in the Model Overview [T1], seen in Figure 5.1A. They select models of interest

by clicking on their respective circles, placing them into the Model Drawer, seen

in Figure 5.1B. By mousing over models in the overview and scanning the Model

Drawer, users can visually compare models of interest [T2]. Then, they use the

ablation and variation tools [T3] to fine tune each model of interest, as seen in

Figure 5.1C. These tools spawn new models with slightly modified architectures

2The source code for the tool along with installation instructions are publicly available at https:
//github.com/dylancashman/remap_nas.
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that train in the background, which in turn get embedded in the Model Overview.

Instructions for new models are sent back to the server. The server maintains a

queue of models to train and communicates its status after each epoch of training.

Users iterate between exploring the model space to find interesting baseline

models and generating new architectures from those baseline models. For the types

of small models explored in this tool, training can take 1-3 minutes for a single

model. Users can view the current training progress of child models in the Generate

Models tab, or can view the history of all training across all models in the Queue

tab. In the Queue tab, they can also reorder or cancel models if they don’t want to

wait for all spawned models to train.

If users are particularly interested in performance on certain classes in the

data, they can select a data class using the Data Selector seen in Figure 5.2b to

modify the Model Overview. Users can also see a confusion matrix corresponding

to each model in the Model Inspector tab, seen in Figure 5.2a. By interacting with

both the model space and the data space, they are able to find models that match

their understanding of the data and the importance of particular classes.

5.3.2 Preprocessing

In order to provide a set of model baselines, REMAP must generate a set of initial

models. This set should be diverse in the model space, using many different com-

binations of layers in order to hopefully cover the space. That way, whether the

user hopes to find a model that performs well on a particular class or that has a

particularly small number of parameters, there will exist a reasonable starting point

to their model search.

REMAP generates this initial model space by using a random scheme based

on automated neural architecture searches in the literature [EMH18]. A Markov

Chain is defined which dictates the potential transition probabilities from layer to

layer in a newly sampled model. Starting from an initial state, the first layer is sam-

pled, then its hyperparameters are sampled from a grid. Then, its succeeding layer is

sampled based on what valid transitions are available. Transition probabilities and
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(a)

(b)

Figure 5.2: (a) The model inspection tab lets users see more granular information
about a highlighted model. This includes a confusion matrix showing which classes
the model performs best on or misclassifies most frequently. Users can also view
training curves to determine if an architecture might be able to continue to improve
if trained further. (b) By selecting individual classes from the validation data, users
can update the darkness of circles in the the Model Overview to see how all models
perform on a given class.

layer hyperparameters were chosen based on similar schemes in the autoML litera-

ture [BGNR16], as well as conventional rules of thumb. For example, convolutional

layers should not follow dense layers because the dense layers remove the locality

that convolutional layers depend on. In essence, REMAP uses a small portion of
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a random automated neural architecture search to initialize the human-in-the-loop

search. For models in this section and in screenshots, 100 initial models were gener-

ated and trained for 10 epochs each, taking approximately 4 hours. While that is a

nontrivial amount of required preprocessing time, it compares favorably to the tens

of thousands of GPU hours required by a fully automated search [ZVSL17, RAHL18],

which might sample over 10,000 models [ZL16].

5.3.3 Model Overview

The top left of the interface features the Model Overview (Fig. 5.1A), a scatter

plot which visualizes three different 2D projections of the set of models. The user

is able to toggle between the different 2D projections. The visual overview of the

model space serves two purposes. First, it can serve as the starting point for model

search, where users can find small, performant baseline models to further analyze

and improve. The default view plots models on interpretable axes of validation

accuracy vs. a log scale of the number of parameters, visible in Figure 5.1. Each

circle represents a trained neural network architecture. The darkness of the circle

encodes the accuracy of the architecture on a held out dataset, with darker circles

corresponding to better accuracy. The radius of the circle encodes the log of the

number of parameters. This means that in the default projection, the validation

accuracy and the number of parameters are double encoded - this is based on the

finding from the interview study that finding a small, performant baseline model is

the first step in model selection. The lower right edge of the scatter plot forms a

Pareto front, where model builders can trade off between performance of a model

and its size, similar to the complexity vs. accuracy plots found in Muhlbacher et

al.’s TreePOD tool for decision trees [MLMP18].

Once baseline models have been selected, the Model Overview can also be

used to facilitate comparisons with neighbors of the baseline. Users are able to

view details of neighboring architectures by hovering over their corresponding points

in the overview. By mousing around a neighborhood of an interesting baseline

model, they might be able to see how small changes in architecture affect model
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performance. However, it is well known that neural networks are notoriously fickle

to small changes in parameterization [MTH89]. Two points close together in that

view could have wildly different architectures.

To address this, REMAP offers two additional projections based on two

distance metrics between neural networks. The two metrics are based on the two

types of model interpretability identified in Lipton’s recent work [Lip16]: structural

and post-hoc. Their respective projections are seen in Figure 5.4b, with the same

model highlighted in orange in both projections. 2-D Projections are generated

from distance metrics using scikit-learn’s implementation of Multidimensional

Scaling [PVG+11].

Structural interpretability refers to the interpretability of how the components of

a model function. A distance metric based on structural interpretability would place

models with similar computational components, or layers, close to each other in the

projection. The system uses OTMANN distance, an Optimal Transport-based dis-

tance metric that measures how difficult it is to transform one network into another,

similar to the Wasserstein distance between probability distributions [KNS+18]. The

resulting projection is seen in section B of Figure 5.4b. Projecting by this metric al-

lows users to see how similar architectures can result in large variances in validation

accuracy and number of parameters.

Post-hoc interpretability refers to understanding a model based on its predic-

tions. A distance metric based on post-hoc interpretability would place models close

together in the projection if they have similar predictions on a held-out test set. Ide-

ally, this notion of similarity should be more sophisticated than simply comparing

their accuracy on the entire test set — it should capture if they usually predict

the same even on examples that they classify incorrectly. We use the edit distance

between the two architectures’ predictions on the test set. The resulting projec-

tion is seen in section C of Figure 5.4b. It can be used to find alternative baseline

architectures that have similar performance to models of interest.

New models generated via ablations and variations are embedded in the
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Model Overviews via an out-of-sample MDS algorithm [TP08]. Users can view how

spawned models differ from their parent models in the different spaces and get a

quick illustration of which qualities were inherited by the parent model.

5.3.4 Ablations and Variations

(a)

(b)

Figure 5.3: Controls for creating (a) Ablations and (b) Variations. Users toggle
between the two types of model generation with a radio button. Ablations create
a set of models, one for each layer with that layer removed, to communicate the
importance of each layer. The Variations feature runs constrained searches in the
neighborhood of a selected model. Users toggle which types of variations are allowed
for each layer, as well as the number of variations allowed per model

According to our expert interviews, an integral task in finding a performant

neural network architecture is to run various experiments on slightly modified ver-

sions of a baseline architecture. One type of modification that is done is an ablation

study, in which the network is retrained with each feature of interested turned off,

one at a time. The goal of ablations is to determine the effect of each feature of a

101



network. This might then drive certain features to be pruned, or for those features

to be duplicated.

In our system, users can automatically run ablation studies that retrain a

selected model without each of its layers. The system will then train those models for

the same number of epochs as the parent model, and display to the user the change

in validation accuracy. If the user wants to make a more fine-grained comparison

between the models, the user can move the model resulting from an ablation into

the Model Drawer, and then use the Model Inspector to compare their confusion

matrices.

Using the Variations feature in REMAP, seen in Figure 5.3b, users can sam-

ple new models that are similar to the baseline model. By default, the variation

command will randomly remove, add, replace, or reparameterize layers. Users can

constrain the random generation of variations by specifying a subset of types of vari-

ations for a given layer. For example, a user might not want to remove or replace

a layer that was very important according to the ablation studies, but could still

allow it to be reparameterized. Valid variation types are prepend with a new layer,

remove a layer, replace a layer, or reparameterize a layer.

When generating ablations and variations, the user is shown each child model

generated from the baseline model that is selected (Fig. 5.1C). Changes that were

made to generate that model are shown as well. By viewing all children on the same

table, the user may be able to see the effect of certain types of changes; e.g. adding a

dense layer typically dramatically increases the number of parameters, while adding

a convolutional layer early sometimes increases the validation accuracy. Spark lines

communicate the loss curve of each child model as it trains. Each child model is

embedded into the Model Overview, and can be moved to the Model Drawer to

become a model baseline.

5.3.5 Sequential Neural Architecture Chips

We developed a visual encoding, SNAC (Sequential Neural Architecture Chip), for

displaying sequential neural network architectures. Seen in Figure 5.4a, SNAC is
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(a)

A B C

(b)

Figure 5.4: (a) The SNAC visual encoding of a neural network architectures, seen at
four different resolutions. This architecture has a three convolutions, each followed
by an activation, and concludes with a fully connected layer. (b) Three alternative
visual overviews of the model space. Section A shows the set of models on a set
of interpretable axes, validation accuracy vs. log of the number of parameters.
Sections B and C use multidimensional scaling to lay out the same set of models
based on structural similarity (B) and prediction similarity (C). The darkness of the
circle encodes the model accuracy, and the radius of the circle encodes the log of
the number of parameters.

designed to facilitate easy visual comparisons across several architectures via juxta-

position in a tabular format. Popular visual encodings used in the machine learn-

ing [ZF14, KSH12, LB+95, HZRS16, SLJ+15] and visual analytics literature [TM05,

WSW+18, KFC16] take up too much space to fit multiple networks on the same

page. In addition, the layout of different computational components and the edges

between them makes comparison via juxtaposition difficult [Gle18].

The primary visual encoding in a SNAC is the sequence of types of layers.

This is based on the assumption that the order of layers is displayed in most other
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visualizations of networks. Layer type is redundantly encoded with both color and

symbol. Beyond the symbol, some layers have extra decoration. Activation layers

have glyphs for three possible activation functions: hyperbolic tangent (tanh), rec-

tified linear unit (ReLU), and sigmoid. Dropout layers feature a dotted border to

signify that some activations are being dropped. The height of each block corre-

sponds to the data size on a bounded log scale, to indicate to the user whether the

layer is increasing or decreasing the dimensionality of the activations flowing through

it. SNACs are available as an open source component for use in publications and

visual analytics tools.3.

5.4 Expert Validation Study

The initial version of REMAP was developed based on a design study described in

section 5.2. Two months later, a validation study was held with the same four model

builders that participated in the design study. The goal of the validation study

was to assess whether the features of REMAP were appropriate and sufficient to

enable a semi-automated model search, and to determine if the system aligned with

the mental model of deep learning model builders. Users were asked to complete

two tasks using REMAP, and then provide feedback on how individual features

supported them in their tasks.

Participants: The same four individuals with experience in designing deep neural

network architectures that participated in the first study agreed to participate in

the validation study. Participants were compensated with a forty dollar gift card.

Method: Interviews were again held one-on-one using an online conferencing soft-

ware and took approximately two hours each. Audio of the conversation as well as

screen sharing were recorded.

At the start of the study, participants were first given a short demo of the sys-

tem, with the interviewer sharing their screen and demonstrating all of the features

3The open source implementation of SNACs can be viewed at http://www.eecs.tufts.edu/

~dcashm01/snacs/
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of REMAP. Then, participants were given access to the application through their

browser and were given two tasks to complete using the tool. The participant’s

screen was recorded during their completion of the two tasks. Participants were

asked to evaluate the features of the tool through their usage in completing their

tasks. One of the four participants was unable to access the application remotely,

and as a result, directed the interviewer on what interactions to make in REMAP

and followed along as the interviewer shared their screen.

Both tasks consisted of discovering a performant neural network architecture

for image classification on the CIFAR-10 dataset, a collection of 50,000 training

images and 10,000 testing images each labeled as one of ten mutually exclusive

classes [KH09]. This dataset was chosen because all four experts had experience

building neural network architectures for this dataset. This allowed the participants

to quickly assess whether the system enabled them to do the types of operations

they might have done manually searching for an architecture on CIFAR-10. In

this evaluation, we report participants’ feedback on whether the tool enabled them

to navigate the model space in a similar manner to their manual model discovery

process.

Tasks: The first task given to the participants was to simply find the neural network

architecture that would attain the highest accuracy on the 10,000 testing images of

CIFAR-10. For the second task, participants were given a scenario that dictated

constraints on the architecture they had to find. Participants were asked to find a

neural network architecture for use in a mobile application used by bird watchers in

a certain park that had many birds and many cats. Birds and Cats are two of the

ten possible labels in the CIFAR-10 dataset. The resulting architecture needed to

prioritize high accuracy on those two labels, and also needed to have under 100,000

parameters so that it would be easily deployable on a mobile phone. The two tasks

were chosen to emulate two types of usage for REMAP: unconstrained model search

and constrained model search.

Participants were given up to an hour to complete the two tasks and were
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encouraged to ask questions and describe their thought process. Then, they were

asked about the efficacy of each feature in the tool.

Findings: Participants were able to select models for both tasks. However, each

participant expressed frustration at the lack of fine-grained control over the model

building process. In general, participants found that the tool could be useful as an

educational tool for non-experts because of the visual comparison of architectures.

They also acknowledged that using the tool would save them time writing code

to run fine tuning experiments. We describe participant feedback on individual

features of the system and then outline two additional features added to address

these concerns.

5.4.1 Participant Feedback

Model Overview: All participants made extensive use of the Model Overview

with interpretable axes, seen in Figure 5.4b(A), to find baseline models. Two par-

ticipants started by selecting the model with the highest accuracy irrespective of

parameter size, while one participant selected smaller models first, noting that they

start with smaller models when they manually select architectures: ”My intuition

is to start with simple models, not try a bunch of random models, using your Model

Overview.” Another participant noted that rather than start with the model with

the highest accuracy, they ”thought it would make more sense to find a small model

that is doing almost as well and then try to change it.”

Two participants appreciated using the Model Overview based on prediction

similarity. One noted ”To me, exploring the models in that space seems like a very

appealing thing to do. ... To be able to grab a subselection of them and be able to

at a glance see how they are different, how do the architectures differ?”. Another

participant used the model view in trying to find a small architecture for the second

task that performed well on cats and birds: ”instead of looking at every model, I

start with a model good at birds, then look at prediction similarity. Since it does good

on birds, I’m assuming similar models do well on birds as well”. That participant
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explored in the neighborhood of their baseline model for a model that also performed

well on cats.

Model drawer and inspection: Each participant moved multiple interesting

models into the Model Drawer, and then inspected each model in the Model Inspec-

tor. They all used the confusion matrix to detect any poor qualities about models.

Several participants ignored or discarded models that had all zeros in a single row

which indicated that the model never predicted an instance to be that class across

the entire testing dataset.

Generation of new models: While some participants found the ablation studies

interesting, one participant noted that some ablations were a waste of resources: ”I

basically don’t want my system to waste time training models that I know will be

worse... For example, removing the convolutional layer.”. Some participants used

their own background and experience to inform which variations they did, while

others used the Model Overview and Model Drawer to discover interesting directions

to do variations in. When viewing two architectures with similar accuracy but very

different sizes, a participant commented ”I can visually tell, the only difference I see

is a pink color. It’s a nice way to learn that dense layers add a lot of parameters.”

All participants expressed a desire to have more control over the construction

of new models. This would allow them to do more acute experimentation once they

had explored in the neighborhood of an interesting baseline model. One partici-

pant described it as the need for more control over the model generation process:

”I think we need more customization on the architecture. Currently, everything is

rough control ... Of course for exploring the search space, rough control would be

more helpful. But for us to understand the relation [between architecture and per-

formance], sometimes we need precise control.” All participants noted that relying

on rough control resulted in many models being spawned that were not of interest

to them, especially once they had spent some time exploring the model space and

knew what kind of model they wanted to generate.
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Figure 5.5: The ability to handcraft models was added based on feedback from a
validation study with model builders. Starting from a model baseline, users can
remove, add, or modify any layer in the model by clicking on a layer or connec-
tions between layers. This provides fine-grained control over the models that are
generated.

5.4.2 System Updates

The feedback from the expert validation study led to two changes to the system.

Both changes allow for more fine-grained control over which models were generated,

both to allow for more precise experimentation and to reduce the number of models

that need to be trained.

• Change C1: Creating Handcrafted Models: While variations proved

useful for seeing more models in a small neighborhood in the model space,

participants expressed frustration at not being able to explicitly create partic-

ular architectures. To address this, we added the handcrafted model control,

seen in Figure 5.5. Users see the same SNAC used in the Ablations and Vari-

ations controls, but with additional handles preceding each layer. By clicking

on the layer itself, users can select to either remove a layer or reparameterize

it. By clicking on the handles preceding each layer, the user can choose to add

a layer of any type.

• Change C2: Subselections of ablations: Two participants found that the

ablations tool wasted time by generating models that weren’t particularly of
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interest to the user. We added a brushing selector, seen in Figure 5.3a to allow

the user to select which layers were to be used in ablations, so that the user

could quickly run ablations on only a subset of the model.

5.5 Use Case: Classifying Sketches

To validate the new features suggested by the study, we present a use case for

generating a performant, small model for an image classification dataset. In this

use case, we refer to tasks T1, T2, and T3 supported by our system as outlined in

section 5.2.

Leon is a data scientist working for a non-governmental organization that

researches civil unrest around the world. He is tasked with building a mobile app

for collecting and categorizing graffiti, and would like to use a neural network for

classifying sketched shapes. Because his organization would like to gather data from

all over the world, the application must be performant on a wide swath of mobile

devices. As a result, he needs to consider the tradeoff between model size and model

accuracy.

Data: He downloads a portion of the Quick Draw dataset to use as training data for

his image classifier. Quick Draw is a collection of millions of sketches of 50 different

object classes gathered by Google [qui]. Rather than download the entire dataset,

Leon downloads 16,000 training images and 4,000 training images from each of 10

classes that are commonly found in graffiti to serve as training data4. Overnight,

he uses REMAP to auto-generate an initial set of 100 models, and the next day, he

loads up REMAP to begin his model search.

Search for baselines in the Model Overview: To find a set of baseline models

[T1], he starts with the default Model Overview, seen in Figure 5.6A. He sees that

there are many models that achieve at or above 90% accuracy, but they appear to

have many parameters. He samples three models from the pareto front, two which

4For this use case, we used the 10 most convergent classes in Quick Draw as identified by Strobelt
et al. [SPM]
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Figure 5.6: In our use case, the model builder first samples models 1, 2, and 3 on
the pareto front of accuracy vs. model size. He then selects models 4 and 5 from
the two alternative Model Overviews provided.

have the high accuracy he desires and one which has an order of magnitude less

parameters. He switches the model view to lay out models based on performance

prediction similarity (Figure 5.6B) and hovers the mouse around the neighborhood

of his selected models to see what alternative architectures could result in similarly

good performance, and adds an additional model which has multiple convolutional

and dense layers, as well as some dropout layers. Lastly, he switches the model

view to lay out models based on structural similarity (Figure 5.6C) to see how small

differences in architecture correspond to changes in either accuracy or parameters

[T3]. He selects a fifth model which differs from his previously selected models in

that it spreads its convolutional filters over multiple layers instead of concentrating

them in a single initial layer.

Ablations: He decides to start with the smallest model, model 3, since it has rea-

sonably high accuracy of 81% and a very small amount of parameters, approximately

1600. Having chosen a baseline, he moves on to generate local, constrained searches

in the neighborhood of the baseline [T2]. After checking in the Model Inspector that

the model performs reasonably well on all classes, he runs ablations on this model
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Figure 5.7: After generating ablations, variations, and several handcrafted models,
the model builder compares all discovered models and chooses the model in the
fourth row, because of its high accuracy and low number of parameters.

and sees that removing the first and last max pool layers increased both accuracy

and the number of parameters. He notes that, with an accuracy of 90% and 11.9k

parameters, the model resulting from removing the first max pool layer is now on

the pareto front between validation accuracy and number of parameters, so he adds

it to his Model Drawer for further consideration.

Variations: While the ablations indicated that he may want to remove some of the

pooling layers, he wants to see the effects of various other modifications to his base-

line model. He decides to generate variations of all kinds (prepend, remove, replace,

reparameterize) along the pooling layers, and also allow for reparameterization of

the convolutional layer. He generates 10 new variations from those instructions, and

by looking at their results, sees that increasing the number of convolutional filters

results in too many parameters, but this can be compensated for by also increasing

the pool size.

Handcrafting Models: After developing an understanding of the model space, he

generates some handcrafted models. He removes the first max pooling layer because

that helped in the ablation studies. He then creates three new models from this

template. First, he splits the starting convolutional layer into three convolutional
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layers with fewer filters, to be more like model 5. He then tries adding dropout, to

be more like model 4. Lastly, he creates a model with activations like model 2, and

different options chosen for pooling layers and kernels inspired by the variations.

The trained results can be seen in Figure 5.7.

Result: Leon eventually decides on using an architecture with 91% accuracy and

only 8.3k parameters, seen in the fourth row of Figure 5.6. This model has compara-

ble accuracy to models 1 and 2 that were initially chosen from the pareto front, seen

in Figure 5.6, but drastically fewer parameters than model 1 (412.8k) and model

2 (16.7k). As a result, the architecture found by Leon can be deployed on older

technology and classify images faster than any of the initially sampled models.

5.6 Discussion

5.6.1 Human-in-the-Loop Neural Architecture Search

This study suggested that the presence of a human-in-the-loop benefited the discov-

ery of neural architectures. However, a common pattern in deep learning research is

for applications to start with the neural network as an independent component in a

set of semantic modules, only for subsequent research to point out that subsuming

all components into the neural network and training it end-to-end results in superior

performance. As an example, the R-CNN method for object recognition dramat-

ically outperformed baselines for object detection using a CNN in concert with a

softmax classifier and multiple bounding box regressors [GDDM14]; however, its

performance was eclipsed only one year later by Fast R-CNN, which absorbed the

classifiers and regressors into the neural network [Gir15, ZZXW19]. This suggests

that the user processes in REMAP , such as selecting models on the pareto front

and running certain ablations and variations, could be automated, and the whole

process run end to end as a single optimization without a human-in-the-loop. Ul-

timately, this perspective ignores the tradeoffs that users are able to make; users

can very quickly and efficiently narrow the search space to only a small subset of

interesting baselines based on a number of criteria that are not available to the au-
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tomated methods. These include fuzzy constraints on the number of parameters, a

fuzzy cost function that differs per class and instance, and domain knowledge of the

deployment scenario of the model. For this reason, I advocate that the human has

a valuable role when searching for a neural architecture using REMAP .

5.6.2 Generalizability

The workflow of REMAP is generalizable to other types of automated machine learn-

ing and model searches beyond neural networks. The two primary components of

REMAP are a set of projections of models and a local sampling method to generate

models in a neighborhood of a baseline model. As long as these two components

can be defined for a model space, the workflow of REMAP is applicable. Of the

three projections used, both the semantically meaningful projection of accuracy vs.

number of parameters and the prediction similarity distance metrics are general-

izable to any machine learning model, while structural similarity distances can be

easily chosen, such as the Euclidean distance between weights for a support vector

machine. Similarly, random sampling in the neighborhood of a model can be done in

any number of ways; if the model space is differentiable, gradient-based techniques

can be used to sample in the direction of accurate or small models.

5.6.3 Scalability

In order to facilitate human-in-the-loop-neural architecture search, REMAP must

make several constraints on its model space. It limits the size of the architectures

it discovers so that they can be trained in a reasonable amount of time while the

user is engaged with the application. In certain domains, however, the tradeoff

between accuracy and size of the model is very different; stakeholders don’t want

to sacrifice any accuracy. In that case, the cap on model size in REMAP could be

removed, and REMAP could be used to find large networks that take many hours to

train. It isn’t feasible to expect a user to stay in situ the entire time while REMAP

trained the several dozen models needed to enable architecture discovery. Instead,

a dashboard-like experience, easily viewable in a casual setting on a small screen
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such as a phone might be preferable. In general, the types of user experiences used

in visual analytics tools for machine learning models may have to be adapted to the

scale of time necessary for constructing and searching through industry-level neural

networks.

The visual encoding used for neural network architectures, SNACs, can only

display network architectures that are linked lists, which leaves out some newer types

of architectures that have skip connections, which are additional linkages between

layers. This problem could be solved by improving the encoding to communicate skip

connections. Ultimately, supporting every possible network architecture amounts to

supporting arbitrary graphs, and there is no space-efficient way to do so without

losing information. For that reason, we limit the scope in this project to network

architectures that are linked lists, because they are simpler to understand and are

a common architecture that are more performant than non-neural network models

for image classification problems.

5.7 Conclusion

Neural networks can be difficult to use because choosing an architecture requires

tedious and time consuming manual experimentation. Alternatively, automated

algorithms for neural architecture search can be used, but they require large com-

putational resources and cannot accommodate soft constraints such as trading off

accuracy for model size or trading off on performance between classes. I present

REMAP, a visual analytics tool that allows a model builder to discover a deep

learning model quickly via exploration and rapid experimentation of neural network

architectures and their parameters. REMAP enables users to quickly search for

baseline models through a visual overview, visually compare subsets of those mod-

els to understand small, local differences in architectures, and then generate local,

constrained searches to fine tune architectures. Through a design study with four

model builders, we derive a set of design goals. I provide a use case in building a

small image classifier for identifying sketches in graffiti that is small enough to used
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on even very old mobile devices. I demonstrate that the semi-automated approach

of REMAP allows users to discover architectures quicker and easier than through

manual experimentation or fully automated search. It also gives the user greater

control over the types of models that are found by the learning algorithm. This al-

lows them to implicitly account for their own understanding of the risk of deploying

the trained model.
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Chapter 6

Data Augmentation to Improve

Learnability

In chapters 3, 4, and 5, I presented three different ways in which visual analytics

tools can help a user discover, assess, and train a model to predict on a data source.

But in many cases, the applied machine learning goal may not be learnable with

the data available. In that case, no matter the amount of computation and human

control, it may be impossible to train a model that meets the needs of the user (V3).

In this chapter, I offer a visual analytics solution to this issue. Experts in the domain

of the applied machine learning problem may know additional information that is

not included in the initial dataset. I present a visual analytics tool that lets a user

explore external information repositories in order to craft additional attributes.1

These attributes can make the applied machine learning problem more learnable.

Over 20 years ago, Pirolli and Card coined the term “information forag-

ing” to denote the process of seeking and gathering information to apply towards a

task [PC99, PC05]. While they focused on foraging for additional entities or rows

1As with the work described in chapter 3, much of the work described in this section was done
as part of a team of researchers in DARPA’s data driven discovery of models project. While I use
first person pronouns in describing this work, there was significant effort in advisement, planning,
and software engineering by many others. A complete list can be found in the author list provided
in the references [CXD+20]. In particular, Subhajit Das and Shenyu Xu helped considerably with
design and implementation of the user interface, and were responsible for running the user study
and analyzing it.
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Figure 6.1: The Auger system allows a user to augment a tabular dataset with
additional columns gathered from a knowledge graph. This figure illustrates the
process of gathering three additional attributes corresponding for a single row of
the data.

of a dataset, foraging for additional data attributes can unlock new analytical capa-

bilities. For example, if a dataset contains a list of countries, adding the population

of those countries as a column enables per-capita analyses.

Traditionally, crafting new attributes and augmenting a dataset with them

is done prior to any visual analysis. Incorporating this process into visual analytics

workflows can benefit both the augmentation process as well as the underlying tasks

of the system in several ways. First, the need for an additional column may only arise

based on insights generated during analysis; if data augmentation is embedded in the

system, users can toggle back and forth between analysis and augmentation. Second,

the process of discovering data and crafting a new attribute is an analytical task

in its own right, and typically consists of complex querying that can be abstracted

away by a visual interface. Lastly, user-driven curation of the columns of the dataset

can serve as an additional medium of communication between user and system: the

user can communicate domain knowledge by adding new columns, and can likewise

learn from the attributes that are discovered by the system.

However, there are many complications in integrating data augmentation into

visual analytics systems. Finding external data and matching it to the entites in

the user’s dataset is nontrivial. Once connected to external data, it can be difficult

to determine which data is relevant or useful to the user’s analysis. Some attributes
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may require the aggregation of multiple pieces of external data and can require

joining through several intermediate entities. These hurdles should be abstracted

away so that the user is not required to be a database expert.

Large scale information repositories provide the potential for interactive data

augmentation because they put the potential data at the user’s fingertips. However,

in order to use such repositories a number of challenges must be addressed. If the

repository is in the form of a data pool (a large collection of tables, e.g. WikiTa-

bles [BND13]), it can be difficult to determine which tables are relevant and joinable

to the user’s dataset. Tabular data can often be fragmented as well: for example, if a

user is foraging for data on water usage across the United States, each municipality

might be responsible for publishing its own data, and the formats may not align,

resulting in sparse, error-prone joins. Joining together multiple tables can also re-

sult in ambiguities over the type of join (left, right, outer, inner) that are difficult to

resolve, and limit the types of attributes that can be constructed without additional

data munging. In addition, plenty of external data may be irrelevant or even harm-

ful to the analysis tasks at hand. While there have been great strides in addressing

some of the technical issues in using Data Lakes (see section 2.6.1), little work has

been done to allow a user to explore potential attributes and construct new ones.

Knowledge graphs offer an alternative to data lakes, because they simplify entity

matching and joining ambiguities due to their graph format. They bring different

challenges, however, in scalability and complexity, and there is still a dearth of tools

available to facilitate foraging over knowledge graphs.

In this chapter, I present Auger, a visual analytics system for augmenting

datasets with carefully crafted columns. These columns are retrieved by running

queries over knowledge graphs, as illustrated in Figure 6.1. First, each row of a

dataset is mapped to an entity in a knowledge graph. Then, to help the user iden-

tify potential information of interest, Auger explores the local graph neighborhood

about entities in the dataset to determine commonly held attributes. Using visual-

izations of data quality, distribution, and the local topology of the knowledge graph,

Auger guides the user through crafting additional columns of data without any pro-
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gramming or explicit querying. Users can express complicated operations over the

knowledge graph by interacting with these visualizations. In sum, Auger abstracts

away the complexity of searching, retrieving, and joining data so that the user can

focus on the exploratory task of determining which attributes are relevant to their

analysis.

Auger shows the promise of integrating column augmentation as a foraging

process within a VA system. We claim that a resulting VA system can make the

exploration and discovery of additional attributes interactive, and let users construct

complex features without programming. Users are able to discover new attributes

as well as create attributes they had in mind. The construction of the augmented

dataset can improve the outcome of downstream analytical tasks, such as insight

generation, predictive modeling, or any other number of tasks that rely on the

presence of a robust dataset.

We offer evidence of these claims by describing two use cases for insight gen-

eration and predictive modeling. In the first use case, we demonstrate how a domain

scientist’s analysis can be enriched through cycles of in-situ column augmentation

and analysis. And in the second use case, we show how a user can craft attributes

that result in significantly more accurate machine learning models. We also conduct

a preliminary user study on two datasets to assess the usability of Auger. The re-

sults confirm that users are able to both discover and craft relevant attributes easily

and quickly.

In this chapter, I present the following contributions:

• I present a visual analytics system, Auger, for exploratory data augmentation

using knowledge graphs.

• I provide use cases of Auger being applied to both insight generation and

predictive modeling to demonstrate the generality of our approach.

• I conduct a user study to assess the ability of our system to join both seman-

tically meaningful external data as well as data that improves a predictive

model trained on the dataset.
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6.1 Knowledge Graphs

Relational databases are one of the most popular formats to store data because

they can be implemented and queried effectively and efficiently. However, recently

knowledge graphs have gained popularity for storing very large datasets because

their entity-based model is conducive to how humans think about data. Knowledge

graphs represent data entities as nodes in a graph and the edges between those

nodes are relationships between those entities. The term knowledge graph has been

loosely used to describe collections of information. Several different definitions have

been offered in recent years. In practice the term has been used interchangeably

with knowledge base or ontology [EW16]. Structuring entities in the form of an

ontology is also used to organize conceptual spaces, for example for the evaluation

of visual analytics systems [CE19] and visualizations that support machine learning

tasks [SKKC19].

The current popularity of knowledge graphs to store information can be

traced back to 2012, when Google introduced its Knowledge Graph. Google’s Knowl-

edge Graph is a repository that retrieves facts about entities in search terms on

their search results pages [Sin12, DGH+14], and is used to power the Google Assis-

tant [Lyn16] and Google Home voice queries [Boh16]. Recent work has demonstrated

that the approach can generalize to other artificial intelligence tasks such as image

captioning and conversational agents [HZLL19, ZYZC18, HCH15].

Since 2012, Wikipedia and other Wikimedia projects have collected informa-

tion into the Wikidata knowledge graph. It contains broad information about tens of

millions of entities. Other large public repositories exist, from DBPedia [ABK+07], a

collection of data resources, to the domain-specific universal protein knowledgebase

UniProt [uni17] and the linguistic resource WordNet [Mil95]. Many of these graphs

are part of the Linked Open Data Cloud [McC20], a knowledge graph that contains

information about other knowledge graphs. All these graphs contain a tremendous

wealth of structured data that can be accessed programmatically with little to no

data munging.
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A wealth information is available in machine-readable form in knowledge

graphs. With Auger users can tap these knowledge repositories as a data source

to augment a dataset. Knowledge graphs have the advantage of providing clean,

curated data which means that the need for data cleaning and matching is greatly

reduced. In addition, the entity-focused way in which knowledge graphs store infor-

mation can make it easier to think about the relationship of data objects and thus

helps users guide the augmentation process.

In this chapter, I describe how a visual analytics system can mine a knowledge

graph to discover new attributes to join to a dataset. I assume that knowledge graphs

contain entities as nodes and express attributes of those entities as edges, connecting

the source entity to either another entity (to express a type of relationship) or to a

literal (such as a string, number or datetime). The number of edges connected to a

node can be a proxy for the number of attributes that are held by that entity. The

flexibility of this structure allows for complex relationships to be expressed between

entities, including one-to-one (i.e. a country has one head of state), one-to-many

(a country is composed of multiple municipalities), and many-to-many (countries

share borders with other countries non-exclusively).

Auger requires that the connected knowledge graph has a data retrieval end-

point that can respond to simple queries about entities and their neighbors. The

connected graph must also have some sort of service to map from the values in the

dataset uploaded to Auger to the entities on that knowledge graph. For example, if

a dataset with U.S. states is uploaded, there must be an existing service that maps

from “New York” or “NY” to the entity in the knowledge graph corresponding to

that state. These two requirements allow Auger to connect a user’s data to the

knowledge graph and to retrieve relevant data for the user to forage from.

In the experiments in this chapter, I connect Auger to Wikidata. It meets

both requirements listed above: it responds to the SPARQL query language so gath-

ering neighborhood data about entities is simple, and it has a service wbsearchentities

to map strings to entities on the graph. But it also has some extra features that I

take advantage of. Wikidata contains a broad set of information making it easy to
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find related attributes for many different kinds of datasets. It also has additional

metadata about the data in its graph including data-type information and human

readable descriptions and labels for each node and edge in the graph. Lastly, due

to its popularity, there is a large amount of documentation and guidance on con-

structing complex queries.

6.2 Tasks and Goals

Auger is developed as part of the DARPA Data-Driven Discovery and Modeling

(D3M) program whose goal is to develop software infrastructure and algorithms to

make automated machine learning accessible to general data scientists. Inspired

by the observation that both the use of exploratory visualization and the use of

advanced machine learning are fundamentally limited by the input data, Auger was

developed to help a data scientist craft better predictive models by foraging for

additional features to add to their dataset.

We conducted interview sessions with four teams within the DARPA D3M

program developing applications for data exploration and predictive modeling. The

goal of the interview sessions was to better understand how a tool like Auger can

help the user to perform data augmentation for the purpose of improving machine

learning model performance and accuracy. Each of the interviewed teams was shown

an early implementation of Auger that was able to search for related attributes and

return a list of them, but without any visualizations. The participants were then

asked about what additional features and interactions would facilitate the discovery

of the types of data that they were interested in for their applications.

I distilled a list of tasks from the interviews that would enable a user to

meaningfully augment their dataset with additional attributes.

1. View a list of joinable attributes for any existing attribute in the

dataset. Revealing the list of potential attributes that can be joined with a

particular column in the dataset helps the user determine what external data

is available for augmentation. It is a key aspect of the exploration process in
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Figure 6.2: The full system showing an analysis session on the ACLED dataset. A
shows the initial list of attributes in the table as well as augmented attributes, like
the maximum inflation rate recorded for each country. B shows the list of attributes
related to the Country column as discovered from Wikidata. The attribute of the
returned attribute is encoded in a symbol, a color, and a label on the left side of
each row. The donut chart in each row shows the estimated amount of rows of the
dataset that will have data available in the connected knowledge graph. When a row
in either of the two columns is clicked, additional metadata about that attribute is
shown in a popup, as seen in C. As attributes are added to the dataset, a preview
of the table is updated in the raw data table as seen in D.

information foraging because it may reveal data that the user wasn’t aware of.

2. Analyze the properties of possibly related attributes before the join

occurs: Before joining a new attribute into a dataset, users will need to gather

information about the new attribute to gauge the new attribute’s impact on

the quality of the dataset. For this reason, users should be provided with as

much information as possible about the potentially joinable attributes before

the join. This might include metadata, examples of the attribute, and any

available information about the general distribution of the new data. In addi-

tion, it is important to communicate whether there will be any missing values

in the joined attribute.

3. Specify aggregations: The relationships between entities in the user’s dataset

and entities in the external data source are varied - they could be one-to-one,
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one-to-many, or many-to-many. In order to fit information encoded as plural

relationships into a single row of data, aggregations must be specified. For

example, a user might want to add the populations of a list of states into the

their data. However, because there could be multiple measures of the state’s

population over the years, the user would need to perform an aggregation func-

tion over these results, such as minimum, maximum, or average depending

on their analysis need.

4. Connect through to additional data: Attributes relevant to the user’s

analysis goals may not always be directly encoded as a property of an entity

that exists on the initial dataset. For example, a user may want to augment

a dataset of countries with the population of each country’s capital. This

information may not be directly accessible as a property of each country in the

data repository. Instead, population size is linked to the entity that represents

the capital, which in turn is linked to the country. To support these cases,

users should be supported to join through intermediate attributes giving them

fine-tuned control over how joins pass through multiple relationships.

6.3 Auger: A Visual Analytics System

In this section, I describe the function and design of Auger. I start by describing the

design of each component of the interface and their interactions. Then, I give details

on the implementation of the back-end connection to the Wikidata knowledge graph.

6.3.1 User Interface

Here, I describe the general look and feel of Auger and go into depth about how

its design enables the tasks listed above. As shown in Figure 6.2, Auger has the

following main interface components:

Column View: This view shows the attributes and their data types (represented

using colored icons) that are present in the loaded data (see Figure 6.2-A). As the

user discovers new attributes, they can remove any particular column if they find it
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Figure 6.3: When a through join is specified, a dialog window pops up to allow the
user to specify aggregations at each level of the join. To help them specify that
query to the system, Auger shows them an example of the neighborhood in the
knowledge graph that is queried for a single row of the table. In this image, the user
would like to add the lowest life expectancy of any neighboring countries because
they believe this will help their analysis of conflict. And for each country, several
values are available for life expectancy, so the user selects the “max” operator. All
six neighbors for Iraq, but only three are shown for simplicity of the illustration.

is not helpful to their analysis by a simple toggle button. Users can click on any row

of this view to see the data distribution of that attribute shown as a histogram chart,

along with any available meta-data describing that attribute (see Figure 6.2-C).

Related Attributes: A user can toggle a search for a collection of related at-

tributes of any string-like attribute in the Column View (Task T1). Auger shows

the retrieved attributes from the connected knowledge graph in a second column

next to the list of attributes of the current table, as seen in Figure 6.2-B. Each

row in this list represents a potential attribute that can be joined to the selected

column. Similar to attributes in the column view, metadata and distributions of

each attribute can be viewed in a tooltip, as seen in Figure 6.2-C. The numbers

surrounded by colored circles, also known as donut charts, represent the estimated

percent of rows of the dataset that have joinable data for that attribute in the

knowledge graph. This information can help the user identify whether a related
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attribute has the potential to help their analysis before joining it to their data (Task

T2). Both the estimated probability and the estimated attribute distribution are

calculated from random sample of possible joinable data, since calculating the true

values would require completing the full join for every row in the dataset. For more

details on implementation techniques, see section 6.3.2.

Adding Attributes: To add any attribute, users click the plus symbol, and Auger

will show a drop-down menu revealing various join-operations users can perform

to join this attribute to the data. The available join operations correspond to the

data type of the relationship. If the relationship is one-to-one, i.e. a country has a

single head of government, then a single value will be retrieved for each row of the

dataset. If the relationship is one-to-many or many-to-many, an aggregation must

be specified. For example, if the attribute is a collection of numbers, such as set of

populations recorded for a country, the user can select numerical aggregations such

as mean, max, min, sum, or variance (Task T3).

It can be very costly to resolve all of the queries needed to join an additional

attribute to an entire dataset; gathering the data from the knowledge graph requires

the retrieval of many different parts of the knowledge graph rather than the retrieval

of a single column from a relational database. Auger mitigates much of that time

cost by only joining attributes for the top 10 rows of the dataset. Users are still

able to glance at the dataset preview, as seen in Figure 6.2-D, and get an idea of

the data that is being joined to the dataset. This lets the user explore the available

attributes rapidly. When the exploration phase is completed, the full join can be

executed.

Through Joins: In some cases, the user may want to join to data through an

intermediate attribute. If the intermediate attribute has a one-to-one relationship

with the rows of the original dataset, i.e. a country has one head of government, then

the user can simply join the intermediate attribute first, and then use that as their

starting point to seek more related attributes. If the intermediate attribute is a one-

to-many relationship, then the user must specify multiple levels of aggregation. I
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call this type of aggregation a “multi-hop aggregation,” since it requires aggregating

data across multiple hops on the knowledge graph.

As an example, suppose the user wants to determine if a country has a lower

life expectancy than its neighbors. Consider how that would be calculated for a

single country, Iraq. To gather the required data from the knowledge graph, the

user must first join to all bordering countries, then connect through them to reach

the life expectancies of those countries. Once all data is selected, aggregations must

be specified to produce the desired value. In Wikidata, countries have multiple life

expectancies recorded, so the user has to specify that they want the maximum life

expectancy recorded. That value is then calculated for each bordering country (i.e.

Iran, Turkey, Jordan, etc.). Then, they have to specify that they want the minimum

among all bordering countries. Expressing this type of query is complicated enough

to explain for a single value, let alone for an entire column. In Auger, the user is

shown a simplified illustration of the topology of the knowledge graph to assist them

in understanding the aggregations that the user must choose, as seen in Figure 6.3.

By viewing the values that will get passed through the knowledge graph to ultimately

calculate the attribute for one row of their data, users get reinforcement that the

complex query they are building results in reasonable data.

Showing the augmented data: When additional attributes are successfully

added to the data, the column view shows a card on the right showing the list of

attributes that are added to the data. Added columns are also shown as a nested

list in the first card below the parent attribute through which it was retrieved from

the knowledge graph, as seen in Figure 6.2-A. If the added column is a string, it

can then be used as a starting point to search for more related attributes. In that

manner, the user can reach further and further away from the initial attribute set by

iteratively adding attributes As attributes are added, the table view updates with

the new list of columns and shows the user example values for the top 10 rows of

the dataset (see Figure 6.2-D).
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6.3.2 Backend Implementation

Here, I describe how our visual analytics system augments a dataset by translating

the tasks supported by the user interface described above into valid queries over a

knowledge graph. Auger gathers data from the connected knowledge graph in two

different subroutines. In all examples in the chapter, Auger connects to Wikidata

using the SPARQL query language.2

Finding Related Attributes: This subroutine receives a column of data as input

(i.e. the Country column and all it’s data, “Germany,” “France,” “Austria,” etc.),

and returns a list of attributes along with assorted metadata. In a knowledge graph,

although these are all entities about a country, they might not share the same set of

attributes (i.e. they might have different numbers of edges connected to the entities,

and those edges might describe different types of relationships). In order to provide

a user with a consistent set of attributes for these entities, we first need to find

their commonalities. As such, the primary goal of this subroutine is to return the

list of attributes that are available on as many of the entities as possible. Checking

the related attributes of each entity to gather this list can take prohibitively long,

especially if the input data contains thousands to millions of rows.

As an optimization step to make this subroutine support a user’s interactive

analysis, I employ a sampling-based technique to reduce computation time. With

this optimization, some subset of the dataset is randomly sampled; empirically I

have found that 20-30 rows are sufficient. Each sampled row is mapped to an entity

on the knowledge graph, and a list of related attributes for that row is retrieved.

Then, the lists for all the rows are compared, and the 50 attributes that appear on

the most lists are returned. The percent of lists that the attribute appears on is

passed on as metadata, and is visually encoded in Auger as a colored donut chart,

seen in each attribute row in Figure 6.2-B.

Various metadata is returned, including three examples for each attribute.

To get the data for the histograms, seen in Fig 6.2-C, an additional query is run for

2Example queries generated by the system for both subroutines are available in the supplemental
material.
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each of the 50 related attributes to get 20-30 examples through which to get a rough

estimate of the distribution of the data. This subroutine runs queries in parallel

and is only limited in speed by the concurrency limits on the knowledge graph API.

For the types of exploration done in the user study and in examples given in this

chapter, retrieving the list of related attributes from Wikidata typically takes 2-5

seconds.

Figure 6.4: Three steps of analysis of an armed conflicts dataset. Visualizations
show the number of records of each event type by (a) country, (b) basic form of
government, and (c) government type. Iniitally, only country is available. Auger is
used to gather basic form of government first, then, after some analysis by the user,
it is used to gather the government type to better understand patterns in the event
types. Visualizations generated with Tableau.

Materializing Joins: This subroutine takes in join instructions and returns an

augmented dataset with an additional column. The join instructions specify the

path taken through the knowledge graph, along with any aggregation functions,

such as “count” or “max.” Auger builds a SPARQL query to crawl the knowledge

graph to retrieve the desired data (see Fig 6.1). The time to retrieve data scales

linearly with the number of rows and is limited by the concurrency limits on the

knowledge graph API. While the user is interactively exploring attributes, Auger

will only materialize the join for the top 10 rows of the data table to provide the

user with a preview of the table in real time (see Fig 6.2-D). When the foraging is

done, all joins are materialized for the entire dataset (rather than just a sample of

rows) in the order in which they were constructed by the user, which takes around

10-15 seconds on the datasets explored in the user study in section 6.6.

Auger is implemented with a VueJS frontend web application and a NodeJS

backend to handle all asynchronous calls. Queries are sent concurrently whenever
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possible. Source code is withheld to maintain anonymity and will be released in the

final publication.

6.4 Use Case 1: Conflict Data

To demonstrate the value of column augmentation for insight generation, I present a

use case in which Auger is integrated into a typical workflow for the popular visual

analytics tool, Tableau. Suppose a political scientist wants to study the factors

that lead to armed conflict. They download the Armed Conflict Location & Event

Data Project (ACLED) dataset for April 2018, which contains hundreds of records

of armed conflicts across many different countries and times [RLHK]. Initially, they

load the data into Tableau to analyze relationships between countries and event

types. They produce a heatmap, seen in Figure 6.4(a), to try to detect patterns,

but find it difficult to visually group countries without more data.

They load their dataset into Auger to look for additional attributes that may

be relevant to event types. When the system is first loaded, the user sees a list of

the attributes in the uploaded table in Figure 6.2-A. They also can see the first five

rows of the data below in Figure 6.2-D.

The political scientist believes the type of government could be related to

the event type, so they click the related attributes button next to “Country” in

Figure 6.2-A. The system returns a list of related attributes found by scraping

Wikidata, as seen in Figure 6.2-B (T1). The user scans through the list of related

attributes, looking for information about the type of government. They see that

Wikidata holds the basic form of government for each country. The tooltip for that

attribute, seen in Figure 6.2-C, provides more information to affirm that this holds

the right data by showing the user examples of the attribute, like “unitary state,”

“federal republic,” and “absolute monarchy” (T2). The user adds this attribute to

the dataset. While looking for the form of government, the user also notices addi-

tional interesting columns for analysis and joins them for future analysis, including

the max inflation rate, minimum life expectancy, mean nominal GDP per capita,
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and the mean Human Development Index (T3).

The user loads this next iteration of the dataset into Tableau, and generates

the same visualization but with the basic form of government replacing the coun-

try name, seen in Figure 6.4(b). While some patterns begin to emerge, the user

notes that the basic form of government is too fine-grained for the type of analy-

sis they want to do, since most categories only have one or two countries in them.

They return to Auger to see if there is any higher-level categorization available for

that column by searching for attributes off of that attribute (T4). They find that

Wikidata holds a subclass of attribute for basic forms of government with exam-

ples including “democracy,” “monarchy,” “republic,” and add that attribute using a

through join before returning to Tableau to generate the final visualization, seen in

Figure 6.4(c). Now, they can see a pattern in that conflicts concentrate on republics

in the region, with democracies and monarchies having interesting patterns in their

types of conflicts as well. This use case demonstrates how the integration of column

augmentation into a traditional insight generation pipeline can unlock new analyses

in-situ.

6.5 Use Case 2: Modeling Unemployment

In the second use case, I demonstrate the value of Auger for a separate type of

visual analytics task - the generation of a predictive model. Many visual analytics

systems have been constructed to enable domain experts to interact with and steer

the generation of machine learning models on their data. Augmenting a dataset

with new columns is one way in which a user can imbue domain knowledge into the

modeling process. They may know that certain attributes can help the prediction

while others may mislead. While it may seem unusual to augment a training set

with additional attributes, the additional attributes found on the knowledge graph

can likewise be added to any data that the resulting model is asked to predict on at

test time when the model is deployed.

I modify Auger to be able to train a predictive model at any point in the
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Figure 6.5: A modified version of Auger used for both Use Case 2 and Task 2 of the
user study. Users can build predictive models as they augment their dataset to help
them discover attributes that help predict a target variable. This figure portrays the
construction of regression models to predict the rate of unemployment in counties
of the United States. The history of trained models is shown at the bottom of the
column view. By mousing over a model, the user can see the five highest feature
importance scores for that model, and the list of attributes used to train that model
are highlighted in black.

data augmentation process (see Figure 6.5). When the user instructs Auger to build

a model, Auger splits the data into a training and test set in the ratio of 0.8:0.2

and trains a random forest regressor. For each model, Auger reports the R Squared

score on the training and test sets, as well as the feature importance scores of the

five most important features.

Consider Andy is a public policy analyst who seeks to build a regression

model on the unemployment rate dataset [une20] with 1200 data samples from

the year 2015. Every row in the data is a county and contains a sparse set of

attributes such as County, State, Month, and the response variable Unemployment

Rate. Andy seeks to augment this data by adding meaningful columns to accurately

predict the Unemployment Rate. When Andy first loads the data in Auger, an

initial model is trained with an R Squared score of 0.646 on training and 0.292

on test set respectively. Andy seeks to improve the regression model’s performance

further by augmenting the base data using REMAP ’s workflow and visual interface.

Andy searches for related attributes of the variable State from the Column View.
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In response, Auger shows a list of related attributes that Andy may consider to add

to the data. From these attributes they click on a set of interesting attributes such

as shares border with, head of government, inflation rate, etc. to see the distribution

of values, and its metadata as a text view.

From these set of attributes Andy thinks that the attributes Inflation Rate

and GDP per capita are good attributes to predict the unemployment rate and thus

decides to add them to the data using the join operation Median. They notice that

the newly added column is displayed on the Table View. However looking at a few

rows of the table Andy finds quite a few cells that are empty indicating that the

joined data may have missing values. Nonetheless, Andy clicks a button to con-

struct a new regression model using the augmented data. Andy notices that the

R Squared score marginally improves (new score: 0.712 and 0.301 on training and

test set respectively). They hover the mouse over the model metric card to see the

list of “Top 5” attributes with their weights utilised in the regression model. While

Andy expected to see a substantial improvement in the model performance, they

infer that the marginal improvement is probably due to missing values in the data

after the join operation.

Motivated to improve the model further, Andy searches for columns that may

directly help to predict the unemployment rate per county. Based on prior knowl-

edge, Andy understands that the population of a state may be directly proportional

to the unemployment rate, and they add that attribute. In the process of searching

for other relevant columns, Andy notices the column Maximum temperature. Inquis-

itive to see if a temperature of a state is correlated with its unemployment rate they

add it to the table. After constructing a new regression model, Andy notices that

the R Squared score improved substantially from 0.712 to 0.855 and from 0.301 to

0.338 for the training and test dataset respectively. Happy with the progress so far

they decide to remove any column that may not be contributing to the prediction

task. First they remove the column Month (by triggering the slider on the Column

View) and then triggers Auger to construct a new regression model. As expected

Andy notices that the R Squared score did not change. Next to investigate the con-
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tribution of the column Maximum temperature, they remove it from the data. Andy

notices that the R Squared score of the new model dropped marginally meaning

that the column Maximum temperature was helpful in improving the model. They

add the column back to the data.

In a short time, Andy has constructed a regression model with substantially

better R2 score than the model trained on the base data. They have also gained

insight into which attributes are relevant to their modeling problem, which may help

their understanding of the resulting machine learning model.

6.6 User Study

I evaluate Auger in a user study. The purpose of the evaluation is to validate Auger

both in terms of its usability and its effectiveness in helping a user improve a machine

learning model through data augmentation. Specifically, I hypothesize that:

• H1: Auger allows users to accurately join external data given a written de-

scription of that data.

• H2: Auger is able to help users discover additional data that can improve the

predictive quality of machine learning models trained on the dataset.

We recruited 6 participants (3 Female, 3 Male), between the age of 23− 36.

We required each participant to have at least an elementary knowledge of machine

learning and data analysis. Due to COVID-19, we were not able to conduct an in-

person study and were limited in the amount of participants we could recruit. We

conducted an online study using Bluejeans3. The participants interacted with Auger

on their own computer while sharing their screen. We provided the participants with

a url to our system that was hosted on our local machine that is exposed using the

Ngrok remote tunneling software4. The study took approximately 50− 60 minutes

and we compensated the participants with a $10 Amazon gift card.

3https://www.bluejeans.com/
4https://ngrok.com/
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6.6.1 Study Design

Before the study we asked participants to fill out a background information ques-

tionnaire regarding their name, age, gender, machine learning expertise and various

use cases in which they use machine learning. We began the study by showing the

participants a tutorial video of Auger, explaining the workflow, interface GUI ele-

ments, and its interaction capabilities that support various join operations. Next we

asked the participants to perform three tasks, the first of which was a practice task

to ensure that they were sufficiently knowledgeable about Auger to perform the ex-

perimental trials. We proceeded to the experimental sessions only when we observed

that the participants were confident and able to use Auger on their own. In the next

two tasks we asked the participants: (1) To add a set of specified columns to a given

dataset. These columns can be added to the data using various join operations sup-

ported by Auger. (2) To freely augment the data such that they can improve the

performance metric of a machine learning model (metric being a R Squared Score of

a regression model). We used the Scikit Learn machine learning library [PVG+11]

to construct Random Forest Regression models, in the same manner as described in

Section 6.5. We collected the following data from each experimental trial: (1) Task

competition time, (2) Task Accuracy, (3) Model performance metric e.g., R Squared

Score, and (4) User ratings collected using a post-study Likert-scale questionnaire.

6.6.2 Datasets

For the tutorial video and practice task I used a U.S. Census Bureau dataset contain-

ing data about poverty in different counties around the U.S. [pov18]. The dataset

contains 3136 rows, and 6 attributes such as FIPS, State, County, RUCCode, and

the number of residents living in the county under the poverty line. For the first

task in our experimental session we use the IMDB Movies dataset [imd18] containing

500 movies and 28 attributes such as Director-name, Duration, Movie-Title, Movie

Cast Facebook Likes, etc. The second task in the experimental session which required

users to augment data and construct regression models, used the unemployment rate
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dataset [une20]. This dataset contained 1200 rows where each row corresponded to

a county’s poverty rate measured in a given month. This dataset contained only 5

attributes such as Month, State, County, and the Unemployment-Rate (dependent

variable).

6.6.3 Tasks and procedure

Participants were first asked to complete a practice task. During the practice task,

their answers were not recorded and their performance was not included in the

analysis described below. For the practice task, using the Poverty dataset, we asked

the participants to add three columns: (1) the area of the county, (2) the population

of the state, and (3) the earliest inception date of any county that each county shared

borders with. While the first two columns could be retrieved using a straight-forward

join by value operation, the third column required the join through operation to

search for the required column that was one “hop” away in the knowledge graph.

For the first experimental task using the IMDB dataset, participants were given

descriptions of four attributes to add: (1) the director’s country of citizenship, (2)

the number of awards received by the director, (3) the number of cast members in

each movie, (4) the sum of the number of awards received by all the producers of

each movie. Note that attributes 3 and 4 required the participants to join through

several attributes.

The final experimental task gave participants 10 minutes to augment the

Unemployment rate dataset with as many attributes as they’d like that they believed

would aid in building an accurate regression model to predict poverty rate. At any

point in the 10 minutes, participants could instruct Auger to build a regression model

with the current dataset to give them insight into whether they were improving

the predictive modeling process. Building a model took about 10-20 seconds, and

participants would be shown the change in R Squared Score for each new model, as

well as the weights of top “5” features used in the model. Random Forest regression

models were used because their flexibility, speed, and accuracy met the constraints

of the experiment.
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6.6.4 Data Collection

After all the tasks were completed, participants were asked to fill out a post-study

questionnaire (using Google Forms) that included: (1) Likert-scale rating questions

on their use of the system, (2) a NASA-TLX [HS88] questionnaire to measure task

difficulty, and (3) Open-ended descriptive questions asking users about the interface

design, the workflow, and other responses related to improve the usability of the

system5. The Likert-scale questions asked the participants to rate (in a scale of

1− 7, 1 being “strongly disagree”) if they found the system: (1) Easy to learn, (2)

Intuitive, and (3) Expressive for data augmentation. We used the open-ended de-

scriptive feedback to qualitatively evaluate the usability and the interaction design

of Auger for their tasks. Open-ended prompts included (1) Describe your thoughts

about REMAP , (2) Describe things you disliked about the system or the workflow.

Elaborate on how you think it could have been improved, and (3) Describe your strat-

egy or your process to augment the data for Tasks 1 and 2 With the consent of the

participants, each session was video and audio-recorded. We encouraged the partic-

ipants to verbalize their thoughts following a think-aloud protocol. Furthermore, to

assess if data augmentation using Auger led to any change in the regression models

performance we saved: (1) model metric (i.e., R Squared Score), (2) feature weights,

and (3) predicted values from the model. We also saved user mouse-clicks to analyze

the set of columns the user explored to augment the data.

6.6.5 Result and Analysis

I report three types of results: task performance, user satisfaction, and qualitative

feedback.

6.6.5.1 Task Performance

To assess H1, I reviewed the number of attributes that participants correctly joined

in Task 1. Five out of six participants properly joined all four expected attributes.

5Pre-experiment and Post-experiment surveys are attached as supplemental material
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Figure 6.6: Participants’ responses about the system (Qn1–Qn4, the higher the
better) and the overall effort (Qn5–Qn9, the lower the better).

Only one participants missed one attribute when joining the number of awards

received by the director. This indicates that in general participants were able to use

Auger to accurately add new data attributes.

Next, to assess H2, I similarly reviewed the R Squared score improvement

that participants achieved by augmenting additional data in Task 2. On average,

participants improved the R Squared Score by 0.048 (σ = 0.014), starting with a

baseline R Squared Score of 0.292. The area and population of the county are two

most frequently joined attributes across all the participants, which is reasonable as

these two attributes are usually the most influential for predicting unemployment

rate.

As a result of the analysis, I accept both H1 and H2 because all par-

ticipants were able to successfully use Auger to explore and identify the correct

attributes for data joining in Task 1, and to improve the predictive quality of a

regression model in Task 1.

6.6.5.2 User satisfaction

I use the post-study questionnaire to assess user satisfaction of the data augmenta-

tion process in Auger. Figure 6.6 shows the results of the questionnaire responses.

138



Although the participant size is too small to infer statistical significance using quan-

titative analysis, I do observe that participants found Auger easy and intuitive to

use based on the Likert scale user ratings (Figure 6.6, Qn1,2). Participants were

also satisfied with the two main functionalities provided by Auger, finding relevant

attributes from the data and joining additional data (Figure 6.6, Qn3,4). The mean

ratings of Qn1–4 were all 6 or above. Furthermore, in analyzing user satisfaction

related to the overall process (Figure 6.6, Qn5–9), I found that participants were

generally satisfied with the process of conducting the tasks, as the mean ratings of

Qn5–9 are all 2 or lower.

6.6.5.3 Qualitative Feedback

To assess H1 and H2 from a qualitative perspective, I analysed participants’ de-

scriptive feedback collected from post-study interviews. I also observed participants’

workflow in using Auger from audio and video recordings of their computer. I report

the following three main qualitative user responses from the study:

Intuitive workflow: All the participants fount Auger’s workflow intuitive to find

and augment relative data attributes. The primary justification for Auger’s intu-

itiveness is that Auger provides a visual interface that is easy to infer and for users

to search and add relevant attributes from the data. As P6 noted, “I liked the inter-

face of this tool because it was easy to navigate and add/remove columns to the base

data.” The intuitiveness helped most participants to easily perform the requested

tasks, especially Task 1. For example, P1 described his experience in doing Task

1 as “just looked at the question and implemented it” and “it was pretty straight

forward.”

Two major strategies in model construction: When conducting Task 2, I ob-

served two common strategies used by the participants: (1) searching for relevant

attributes based on existing or prior knowledge and (2) exploring all possible com-

binations of available attributes to find one that results in improvement in model

performance. Some participants relied on their existing domain knowledge for aug-
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menting the data with new attributes. This was summarized nicely by P5, “I was

actually using my domain knowledge. Thinking which factors can improve unem-

ployment rate predictions, and then tried to select the variables based on the choices

I had. This actually helped me improve the model’s performance.” However, a few

participants who may lack prior knowledge about the data, instead explored the

dataset and tried out all possible combinations of attributes to find a model that

is a significant improvement over the model trained on the base data. “I selected

columns one by one to see the change of R-squared score. By doing so, I was able to

filter the variables that decrease R-square. In the end, I was able to get a relatively

high R-squared model” (P6 ). The rest of the participants adopted a combination

of both strategies. For example, P2 described his strategies as follows, “Thought

a bit about what could boost performance, then I did some trial and error (manual

feed-forward selection of attributes).”

Need for more powerful system features for expert users: Participants with

visual analytics backgrounds expected editable visualizations to represent or encode

feature distribution differently. “It would be cool to add additional ways of visualizing

attributes” (P2 ). What’s more, participants with database backgrounds wanted

more details about queries of fetching data to increase flexibility. “Maybe consider

providing the real query of fetching the dataset to the expert users to give them more

clear sense and allow them to change the query” (P1 ). Similarly, participants with

more expertise in machine learning sought more control over the model building

process. “May be add hyperparameter tuning for the model building phase, such as

L1, L2 norm or change learning algorithm of the model” (P2 ). All these suggestions

are valuable for guiding our further improvement in generalizing Auger to tackle

various problem domains.

6.6.6 Limitations

While our user study results support both H1 and H2, the results should be read

in the light of the study limitations. The number of the participants for our study
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are limited, which might be a confounding point of the results. As we conducted the

study online, the uncertainty existing in the online setup, such as internet connec-

tion, might also confound the results. To improve the performance of the system and

the fluidity of user interaction, I limited the number of related attributes that partic-

ipants could fetch for each parent attribute. Although it did help participants with

a smoother user experience during the study, participants also complained about

the restriction as it limited their performance of tasks, especially Task 2. Despite

the limitations, the user study does help us to better identify the limitations in our

system design and improve the system with new features.

6.7 Discussion

Through the user study and use cases, I have demonstrated the efficacy of informa-

tion foraging using knowledge graphs within visual analytics systems. The generality

of Auger suggests that data augmentation could added into traditional visual analyt-

ics system workflows to improve the outcome of any embedded task. Many fruitful

avenues of research arise when considering how to apply information foraging to the

full space of use cases which are served by visual analytics systems.

6.7.1 Mental Models of Data Augmentation

Knowledge graphs can be difficult to reason about, especially when they are used to

find data corresponding to an entire column of a dataset. In Auger, I address this

by showing the user previews of the joined dataset, as well as visualizations of the

distribution of joined data and an example of the portion of the knowledge graph that

is used to construct a single value (see Figure 6.3). This approach was based on our

conversations with designers of visual analytics applications for building predictive

models. A better understanding of the user’s mental model of the knowledge graph

and the joining process is needed to generalize this approach to other use cases. I

generally aimed to hide the complexity of the underlying knowledge graph, but it

may be the case that more direct exploration of the knowledge graph is helpful for

141



some cases.

6.7.2 Design Space for Interactions with Knowledge Graphs

In Auger, the channel between the user and the knowledge graph is limited to the

two subroutines shown in section 6.3.2, which allow the user to see lists of related

attributes and then construct queries given that information. However, there is

more potential to improve the user’s control over the process and address edge cases

by expanding the set of interactions between user and knowledge graph. Automated

processes in Auger could be replaced by collaborations between user and system.

For example, ambiguities in the entity resolution used to retrieve a list of

related attributes can be solved by user interaction. A list of countries could re-

fer to the governmental entities they describe, or they could refer to the national

soccer teams participating in the World Cup; there will always exist cases where

disambiguating the type of a column will require domain expertise from a user.

The user could also benefit from more fine-grained control over the process

of building aggregation queries. Users may want to join timestamped data, which

would necessitate some specification from the user of how to parse and interpret

temporal columns. Spatial data offers an additional potential, as the user might

want to use geographical data in their dataset to search for the closest weather

station or other geographically tagged entity. There are many types of queries that

might necessitate different user interactions than have been used in previous visual

analytics systems.

6.7.3 Scalability

In order for Auger to operate at the speed necessary for exploration, it makes use of

only samples of the data, rather than the entire dataset . When gathering the list of

related attributes for a column, it samples only a subset of values from that column.

Those related attributes are then shown with estimations of their distribution as

well as what percent of rows have a joinable value. While I use a sampling-based

approach, there is plenty of opportunity to develop methods that provide better
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estimates or allow for joining to more data in less time. The database community

is working on tools for query optimization over knowledge graphs [MAG+20], which

will help. But specific indices, query optimizations, and data structures should be

explored by the visual analytics community, the same way that many advancements

in querying tabular data have been made to allow for faster data exploration [LKS13,

WCL+18, PSSC16, LJH13, TLW+19].

6.8 Conclusion

In this chapter, I presented Auger, a visual analytics system for explorative in-

formation foraging using knowledge graphs. Knowledge graphs offer a wealth of

information on a broad array of topics that could be used to improve the outcome

of embedded tasks of visual analytics systems. In our use cases, I demonstrated

that the data gathered through Auger could result in better predictive models and

better insight generation on two datasets. And in our experiment, I showed that

Auger is simple to learn and use, as all six of our participants were able to effectively

explore and join data on multiple datasets within a 60 minute session. By crafting

new attributes for their dataset, users can utilize their domain expertise to provide

more information for the learning algorithm to use to find an appropriate model.
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Chapter 7

Discussion

In chapter 1, I posited that visual analytics can help bridge the gap in applied

machine learning problems because it allows a user to make up for vulnerabilities

in learning algorithms. In chapters 3, 4, 5, and 6, I described four different systems

that each showed one way in which visual analytics could be used in that way. In

this chapter, I start by explaining how these four systems can be taken together as

the foundations of a theory that is applicable to future visual analytics research.

Then, I outline a set of guidelines for the visual analytics community based on this

experience for transitioning from system building to theory building. Lastly, I list

the ramifications of this work on the future of applied machine learning, and describe

avenues for future work in that direction.

7.1 Bridging the Gap

In this dissertation, I have argued that visual analytics can improve outcomes of

applied machine learning tasks. In the previous chapters, I presented four different

systems that demonstrated examples. In this section, I aim to elaborate on the com-

mon thread between those systems as media for filling the gap in machine learning

algorithms with human intervention. In particular, I claim that these systems taken

together form a contribution to the theory of visual analytics for machine learning.

I described some visual analytics theory in the related work, and the workflow
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for exploratory model analysis described in chapter 3 is an incremental addition on

that theory - specifically that the modeling process should be brought into the

visual analytics tool as early as possible so that we can reap some benefit from

visual exploration. But this has been done, piece meal, by previous systems. If we

look at the related work section and see the set of visual analytics tools that help

with model building and construction, they bring modeling into the visual analytics

workflow. My work in chapter 3 differentiates itself by pointing out that those

systems work only with a single model type, whereas our general approach lets a

user search through learning algorithms as well. This is a small difference. But the

work described in that chapter led me to investigate a broader hypothesis that led

to the other three works described in this dissertation.

In the work leading to this dissertation, I looked into the ways that visual

analytics was empirically used to improve machine learning outcomes. The value of

the visual analytics systems found in the literature was large enough to justify the

arduous and expensive task of building those systems. But there was a a dearth of

theory that would explain why visual analytics was particularly helpful. It’s often

suggested that there’s utility in having a user have a hand in building a model, feel

its weight and timber. That way, the user will have a better trust and understanding

when deploying that model. It could be that the only role of human in the loop

systems is to provide a better explanation of the automated process to the decision-

maker.

However, in this thesis, we posit that there are completely quantitative rea-

sons why the user needs to be involved in building a model in applied machine learn-

ing. This isn’t a specious statement; in internal discussions, some machine learning

researchers involved in the DARPA Data Driven Discovery of Models project have

suggested that, given sufficient resources and clean data, an automated model search

will always outperform a human-in-the-loop model search. But in our early work

in building a visual analytics system for model selection, described in chapter 3,

we showed that wasn’t the case. In a blind evaluation run by the National Insti-

tute of Standards and Technologies (NIST), participants were able to select a better
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model than machines in both regression and classification tasks. And interestingly

enough, the Snowcat system does not feature complex visualizations or model steer-

ing capabilities. All that the participants had at their disposal were cross-linked

data visualizations that facilitated explorations of the training data and compar-

isons of the predictions of multiple models. A very difficult problem was solved with

seemingly easy means. This drove me to look for a reason why automated machine

learning model searches might fail. And it demanded further isolated study on other

ways in which a human could account for vulnerabilities in learning algorithms.

This led to the three systems described in chapters 4, 5, and 6. The applied

machine learning problems they addressed were targeted because they each reflect

a different assumption in the learning theory that must be present to guarantee

performance. While the methods for validation varied from use cases to blind user

studies, each work provided some new evidence for the value of visual analytics in

its respective applied domain. In each case, the user’s goals were met better than

a strictly automated solution. The theory of involving the user to compensate for

vulnerabilities in learning algorithms suggested that the human and the machine

could work collaboratively towards solving those goals using visual analytics as a

medium, and that was borne out in the validations of the four tools.

7.2 Guidelines for Transitioning from Systems to The-

ory

Ideally, when building a new theory for a nascent field, one would first build a

mathematical model, and then create a set of controlled experiments that poke and

prod to provide evidence for and address any skepticism of that model’s assumptions.

But for visual analytics, our methods for evaluation are still mostly shifting sands,

as the primary research venue for visual analytics, IEEE Visual Analytics for Science

and Technology (VAST) is only about a decade old. We haven’t agreed on how to

build theory yet, and what stands for convincing validation. That is at least partially

because it is incredibly difficult. Evaluating visual analytics involves evaluating both
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the human experience of a tool or technique as well as its downstream effect on the

outcome of the analytical session. And the computational tools of analytics are

being reinvented literally every day as new machine learning research comes out on

arXiv at a more rapid pace than any science in human history. No standard testbed

exists because analytics is such a broad topic. Similarly, the contributions for the

human side of visual analytics lack clear metrics of efficacy due to the inability to

separate trust, learning, usability, background, or visual literacy from one another

to conduct a controlled study.

As a result, most contributions to visual analytics found in conferences and

journals are not theory or techniques, but are systems applied to a specific target

audience and problem. If no other evaluation instrumentation can be agreed upon,

we can still build a system, put a relevant user in front of that system, and observe

and monitor their behavior or their competency at tasks. This is the bedrock of

progress in our field. But each new piece of evidence requires the construction

of a new system, which can be very expensive as visual analytics tools typically

require complex engineering across many different technologies. In order to improve

the pace of our research and the generalizability of our results, we need to find a

different way. And we need to make sure that the systems that we do build are

designed to isolate generalizable contributions as much as possible. This leads me

to the following guidelines on transitioning from expensive system-building to rapid

experimentation.

1. G1: Start the design process off with a clearly stated hypothesis.

Many visual analytics projects begin with an interesting domain problem, and

they proceed as design studies for applying visual analytics to that domain

problem. I posit that the traditional design study methodology outlined by

Sedlmair et. al. [SMM12] is not alone an appropriate guideline for visual ana-

lytics applications. Compared to information visualizations, the design space

for visual analytics is not as well understood and there are many dimensions

of that design space that can be very expensive to design in but offer little
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generalizable value, such as the choice of progressive or synchronous updates

between backend and frontend. To motivate the generalizability of results,

then, I recommend that each design study begins with a narrow hypothesis of

what will be tested.

2. G2: Remove extraneous features in order to control for the inde-

pendent variable. Most visual analytics systems are designed to be as effec-

tive as possible for their target audience. They often contain many different

elaborately designed features. These features are often linked together in co-

ordinated multiple views. As a result, it becomes almost impossible to control

for any independent variable being studied. If a user enjoys a system or is

able to meet their goal using the system, which feature was responsible? Even

if the user expresses which feature was helpful, with cross-linked components

in the UI, it can be hard to know if there wasn’t some unseen function that

actually led them to complete their goal. Except in application studies where

a tool is actually going to be deployed and used, every effort should be made

to pare down features that confound the study of the hypothesis.

3. G3: Design smaller experiments to study individual techniques.

When a complex visual analytics theory is being tested, we may not have

the appropriate instrumentation to test it all at once. Multiple smaller-scale

experiments with less expensive technological burden on the researcher can be

a more prudent approach. They allow the researcher to analyze one variable

at a time, and if the experimental hypotheses are strongly confirmed, they can

provide more rationale for the design of a larger experiment.

4. G4: Build integrative mathematical models of computation, visual-

ization, perception, and cognition. The analytical loop between human

and machine is the composition of several smaller loops that have been studied

in different fields. Tying these loops together can provide better starting points

for our theory because it builds on the brilliant contributions of older fields.

Early visualization research integrated cognitive psychology, such as power
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laws, into theory about how visualization was perceived [VW05]. More recent

work has tied computation theory [CFEC17] and information theory [CJ10]

into building an understanding of the roles of human and machine in a col-

laboration. This work is hopefully a contribution integrating learning theory

into this gap as well.

These guidelines address a common need in visual analytics research: to

conduct more impactful research at lesser expense. I believe that this is a goal

worth working towards, and hope that other efforts to reform the state of evaluation,

such as the EVIVA-ML and BELIV workshops at IEEE VIS continue to see broad

support and energetic discussion.

7.3 Future Work

My primary focus in continuing work in applied machine learning is to find a broader

impact for visual analytics. Machine learning is growing at a breakneck pace in

research output and user base. In both research and daily use, visualization is a

frequent tool. Almost every poster presentation at any machine learning conference

has an interesting, well-thought-out visualization communicating the insight of their

research. And most consumer-facing analytics tools use basic visualizations as their

medium of communication with the user. However, neither of these visualizations

are typically built by visualization researchers. Our field tends to not be able to

penetrate to the broader fields of data science and computer science.

I attribute this to the complexity, nuance, and possible obtuseness in the

announced contributions of our work. Since novel visual analytics research often

takes the form of an elaborate system applied to a single use case, those outside

our discipline have little reason to believe that there is something of value to learn

in exchange for the investment of learning that domain problem. If, instead, our

contributions were more atomic, more clearly and succinctly stated, and more con-

vincingly evaluated, they might be adopted by a broader audience.

I believe that the thesis defended in this dissertation points to some poten-
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tially impactful yet simple visual analytics techniques. For example, vulnerability

V1, the domain mismatch between training and testing examples, is a well known

issue in machine learning with a plethora of literature about how to mitigate it,

such as concept drift [ŽPG16]. However, you still typically need to identify the

type of mismatch you have, something that visualization should always be able to

help with. I believe that this can be solved in a generic way by simply providing

small, exploratory views of the training and testing set, overlaid with the model’s

predictions. This technique proved useful in chapter 3, but it needs to be isolated

and tested in a more controlled environment. If the test is successful, it should be

easily deployed as an addition to machine learning libraries or as a jupyter notebook

widget.

I also plan on continuing to investigate the ways in which data augmenta-

tion can act as a medium for a domain expert to communicate their expertise to a

learning algorithm. For example, by adding in a “weather” attribute on a dataset,

the user is constraining the model to account for the relationships present between

“weather” and the other attributes. However, there is little research into the types

of interactions that are helpful in a user crafting these attributes. In chapter 6, we

show just one way, embedded in a larger application. A sequence of smaller ex-

periments comparing techniques would have broader applicability to other analytics

environments.
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Chapter 8

Conclusion

In this dissertation, I defend my thesis that visual analytics systems can improve

the performance of deployed models in applied machine learning tasks by allowing

the user to compensate for vulnerabilities in machine learning paradigms.

I identify four vulnerabilities based on the assumptions found in the empir-

ical risk minimization paradigm. V1 claims that a misalignment between training

set and testing set can result in unexpected behavior in deployment. This can be

addressed with visual exploration of the training set as well as visualizations of the

model’s predictions and apportionments of errors. V2 claims that the actual risk is

often much more complex than the loss function used in ERM. Instead, domain ex-

perts should be able to drive the parameter space search to find appropriate regions

that perform well according to their understanding of risk in deployment. Visual-

izations of the model’s behavior during training can also help a user judge whether

a model is learning heuristic properties that may not be encoded into the machine

learning algorithm’s optimization. And lastly, V3 states that some problems will

not be solveable without more information. By adding additional attributes to a

dataset and thus adding more domain-specific information, a user might be able to

solve that vulnerability.

For each vulnerability, I design a system to demonstrate how visual analytics

is an appropriate medium for bridging the gap between human goal and machine

learning. Through these systems, I show existential evidence that visualization pro-
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vides a unique opportunity to address difficult applied machine learning problems.

By acting as a medium between human and machine, visual analytics can address

some of the most significant issues in applying machine learning algorithms to real-

world data.
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